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Abstract
Background: Unsupervised annotation of proteins by software pipelines suffers from very high
error rates. Spurious functional assignments are usually caused by unwarranted homology-based
transfer of information from existing database entries to the new target sequences. We have
previously demonstrated that data mining in large sequence annotation databanks can help identify
annotation items that are strongly associated with each other, and that exceptions from strong
positive association rules often point to potential annotation errors. Here we investigate the
applicability of negative association rule mining to revealing erroneously assigned annotation items.

Results: Almost all exceptions from strong negative association rules are connected to at least
one wrong attribute in the feature combination making up the rule. The fraction of annotation
features flagged by this approach as suspicious is strongly enriched in errors and constitutes about
0.6% of the whole body of the similarity-transferred annotation in the PEDANT genome database.
Positive rule mining does not identify two thirds of these errors. The approach based on exceptions
from negative rules is much more specific than positive rule mining, but its coverage is significantly
lower.

Conclusion: Mining of both negative and positive association rules is a potent tool for finding
significant trends in protein annotation and flagging doubtful features for further inspection.

Background
There are currently over six million amino acid sequences
known, and only a quarter of a million have been manu-
ally annotated [1]. Moreover, as estimated by [2], merely
for 3% of proteins functional annotation is based on
experimental evidence. Due to the advent of super-fast
and ultra-low-cost DNA sequencing technologies [3] the
speed of genome sequencing continues to increase, and
sequencing prices continue to plummet. Given the
quickly widening gap between the amount of molecular
data and the capacity of human experts there is little

doubt that electronic annotation by automated software
pipelines will be the only source of information about the
overwhelming majority of proteins.

In silico annotation generated by bioinformatics methods
has the advantage of being efficient and cheap, but at the
same time suffers from a notoriously high error level [4,5].
Most of these errors are caused by homology-based anno-
tation transfer where available similarity is not sufficient
to warrant the transfer of information from the source to
the target sequence, or because the annotation of the
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source sequence is already wrong. Further complications
include the presence of compositionally biased sequence
regions, mosaic domain structure of eukaryotic proteins,
wrong gene models, and difficulties in recognizing pseu-
dogenes.

The most obvious and direct approach towards improving
the reliability and coverage of unsupervised protein anno-
tation entails the development of better bioinformatics
tools. Remarkable algorithmic advances of the past dec-
ade include more accurate gene prediction techniques
(reviewed by [6]), highly sensitive sequence similarity
searches based on hidden Markov models [7], protein sec-
ondary structure prediction approaching the 80% accu-
racy barrier (e.g., [8]), novel tools for predicting protein
cellular localization [9], improved strategies for annota-
tion transfer by homology (e.g., [10]), and enhanced pro-
tein function prediction by phylogenomics methods [2],
to name just a few. Automatic annotation efforts also sig-
nificantly profit from highly curated and actively main-
tained information resources, such as sequence [1],
pathway [11] and interaction [12] databases, functional
and structural classifications of proteins [13-15], as well as
the collections of protein domains and motifs [16,17].

A complementary tactic to improve the quality of protein
sequence databases involves retrospective search for errors
in the total corpus of already available annotation. Under
this approach protein annotation is considered to be a
collection of records, one per each gene, containing a var-
ying number of attributes, ranging from just a few mini-
mal descriptors (length, pI) for hypothetical proteins, to
dozens of annotation items (motifs, EC numbers, locali-
zation, structural folds, etc) for better characterized pro-
teins. Modern data mining techniques can be used to
identify statistically significant associations between indi-
vidual attributes, and then to investigate exceptions from
such associations that can potentially point to erroneous
assignments.

In our earlier work we applied the formalism of associa-
tion rule mining to extract associations between annota-
tion items in large molecular sequence databases [18].
Considering a database with multiple entries, with each
entry ascribed a finite number of features, association
rules [19] are simple implications that can be formulated
in the form (A1 & ... & An) => Z, where A1 ... An (the left-
hand side of the rule, LHS) and Z (right-hand side, RHS)
are different features, and the rule means "database entries
that possess all features A1 ... An are likely to possess fea-
ture Z". The rules of this type are thus positive because they
model a positive relation between two item sets. Each rule
is characterized by its coverage, the number of entries in
the database that possess all features A1 ... An, its support,
the number of entries satisfying both the left and the right

sides of the rule simultaneously, and its strength, which is
essentially the probability that a given database entry will
satisfy the right side of the rule given that it satisfies the
left side of the rule.

Our strategy for finding errors in annotation consisted of
finding rules with a strength very close, but not equal, to
1.0, which means that such rules have a minor number of
exceptions, and then identifying all proteins that consti-
tute exceptions to these rules. Applied to the Swiss-Prot
[1] database, this approach yielded 7396, 4956, and 4046
rules with a strength greater than 0.95 and a coverage of
over 50 which were not fulfilled exactly once, twice, or
three times. In order to test whether exceptions from
strong rules actually correspond to annotation errors sub-
sequent releases of the Swiss-Prot database were com-
pared and additional manual verification was conducted.
It was indeed found that exceptions to strong rules get cor-
rected substantially more often than the rest of the anno-
tation. For unsupervised annotation automatically
generated by the PEDANT genome analysis system [20]
the total fraction of exceptions from strong rules classified
by manual analysis as errors was as high as 68%. It was
also found that most of the errors in the Swiss-Prot data-
base are under-predictions (i.e. absence of features that
would be expected based on association rules), consistent
with the prudent manual annotation process adopted by
Swiss-Prot, while in PEDANT errors are typically caused
by over-predictions.

In this work we continue to explore the application of rule
mining to correcting annotation errors and investigate the
utility of negative association rule mining, which, as the
name implies, represents the identification of negative
relationships between item sets [19]. A negative associa-
tion rule has the form A1 & ... & An (LHS) => not Z (RHS),
with A1 ... An and Z being different features, and the rule
means 'database entries that possess all features A1 ... An are
unlikely to possess feature Z'. For negative rules support is the
number of database entries satisfying both the LHS and
the RHS, i.e. those entries that possess all features A1 ... An
and do not possess the feature Z. An additional very
important parameter used in this work to characterize
negative rules is leverage which is defined as the difference
of the rule support and the product of supports of its LHS
and RHS. Leverage measures the unexpectedness of a rule
as the difference of the actual rule frequency and the prob-
ability of finding it by chance with the given frequencies
of its RHS and LHS.

A negative association rule is thus an implication from the
union of several items to an item negation. An example of
a trivial biologically relevant negative association rule is
"Nuclear localization => not bacterial origin", i.e. every
protein annotated as localized in the nucleus cannot have
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a bacterial origin. As with positive rules, negative rules are
not necessarily absolutely strict. For instance, the rule
"Operon structure => not eukaryotic origin" has a number
of exceptions because bacterial-like operons were
described in Ceanorhabditis elegans [21]. Since these excep-
tions comprise only a small fraction of the annotated
genes, this rule may naturally be interpreted as "the
majority of genes constituting an operon structure do not
originate from eukaryotic organisms". In this specific case
exceptions from a strong rule are biologically motivated
and do not represent errors. However, in many other cases
such exceptions do point to erroneously assigned annota-
tion items. For example, the rule "intracellular transport
vesicles => not bacteria" has four exceptions in the PED-
ANT annotation caused by erroneous homology-based
transfer of the functional category "intracellular transport
vesicles" to four bacterial gene products. We present a
large-scale evaluation of exceptions from strong negative
rules in the PEDANT genome database and assess their
utility for detecting and correcting annotation errors. To
our knowledge this is the first application of negative
association rule mining to molecular biological data.

Methods
Extracting item sets from the PEDANT genome database
PEDANT software suite [20] is an automatic annotation
pipeline that runs various bioinformatics analyses on each
protein sequence and stores the results, appropriately
parsed, in a relational database. The associated PEDANT
genome database [22] currently contains pre-computed
annotation for 468 genomes and a total of more than 1.76
million gene products. Most of these data were calculated
using the version 2 of the PEDANT software, but we are
currently deploying the all-new version 3 with substan-
tially enhanced capabilities including a new graphical
user interface and an extended set of bioinformatics algo-
rithms.

Here we used the following 10 model genomes freshly
processed using PEDANT3 (see http://pedant.gsf.de):
Helicobacter pylori, Arabidopsis thaliana, Saccharomyces cere-
visiae, Thermoplasma acidophilum, Synechocystis sp., Parach-
lamydia, Mycobacterium tuberculosis, Aeropyrum pernix,
Escherichia coli, and Bacillus subtilis. The total of 55063
gene products were annotated with more than 1 million
(1265974) annotation features suitable for association
rule mining (see Table 1).

A typical annotation entry extracted from PEDANT for a
given gene product has the following form:

"length:S, Pi:C, GC:H, Bacteria, alpha/beta, do:L, b.129.1,
fc16.03, lc:0, fc16, fc40.01, PF04014, COG2336,
IPR007159, fc40, DNA-binding, fc32, fc32.05"

This line describes the antitoxin of the ChpB-ChpS toxin-
antitoxin system from Escherichia coli as a protein that has
small length (length:S), acidic isoelectric point (Pi:C, less
than 5.5), gene with high GC-content, bacterial origin
(Bacteria), and low content of disordered regions (do:L),
does not possess any low complexity regions (lc:0), has
structural class of the 'alpha/beta' type and the PFAM [16]
domain PF04014. It belongs to the IPR007159 InterPro
[23] family and the b.129.1 SCOP [13] structural super-
family, and it is a homolog of the UniProt [1] proteins
annotated with the keyword "DNA-binding". According to
the MIPS Functional Catalog [15] (only two upper levels
are considered here) the function of this protein is
described by the labels fc16 (protein with binding func-
tion), fc16.03 (nucleic acid binding), fc40 (cell fate),
fc40.01 (cell growth/morphogenesis), fc32 (cell rescue,
defense and virulence) and fc32.05 (disease, virulence and
defense).

Annotation attributes extracted from PEDANT can gener-
ally be subdivided into three types in terms of their intrin-
sic susceptibility to errors.

• Type 1. Features that are definitely known. This group
includes either inherent properties of genes and their
products, such as their taxonomic origin, or features that
can be unambiguously calculated from primary
sequences, such as GC content, length, pI value, percent-
age of low complexity regions, and so on.

• Type 2. Structural and functional properties of proteins
predicted directly from their amino acid sequences by ab
initio computational algorithms (secondary structure, dis-
ordered regions, coiled coils, transmembrane segments,
signal peptides, cellular localization).

• Type 3. Structural and functional properties of proteins
derived by similarity searches against previously charac-
terized gene products. These features include sequence
domains, keywords, functional categories, enzyme
classes, and functional and structural superfamilies.

It is obvious that the features of type 1 are unfaultable and
cannot generally contain errors (except for incorrectly pre-
dicted gene models, typographical errors, or errors caused
by software bugs or human error). Features of type 2 are
typically predicted with the accuracy in the order of 70%
[24] by machine learning techniques, such as neural net-
works or support vector machines. If no experimental data
for a given feature type is available (e.g. known three
dimensional structure, experimentally determined cellu-
lar localization), such predictions can only rarely be fur-
ther improved by human curation. Finally, features of
type 3 are transferred from one or several previously anno-
tated gene products to the query protein based on a suffi-
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Method used

Feature name Description Examples Algorithm Threshold value 
used

Reference Number of 
proteins having 
items of this type

Tota
items

Length Protein length 
(number of 
amino acids) 
binned over four 
ranges

Small (<120), 
Medium (>=120, 
<1000), Large 
(>=1000, <1500), 
eXtraLarge 
(>=1500)

Direct 
calculation

Not applicable None All (55063) All (5

GC content of 
the gene

The value of the 
GC-content 
binned over 3 
ranges

L (<=0.4), M 
(<0.5), H (>=0.5)

Direct 
calculation

Not applicable None 30218* 3021

Isoelectric point The value of the 
isoelectric point 
binned over 4 
ranges

C (aCid, pI 
<=5.5), NC 
(Neutral-aCid, 
5.0 < pI <=7.0), 
NL (Neutral-
aLkaline, 7.0 < pI 
<=9.2), L 
(aLkaline, pI > 
9.2)

Direct 
calculation

Not applicable None All (55063) All (5

Low complexity 
regions

Percentage of 
residues 
predicted to be 
in low 
complexity 
regions binned 
over three 
ranges

High (>=10%), 
Medium (0–10%), 
None (0%)

SEG Default SEG 
parameters

(Wootton, 1994) All (55063) All (5

Disordered 
regions

Percentage of 
residues in 
disordered 
regions binned 
over 4 ranges

High (>=20%), 
Medium (10–
20%), Low (0–
10%), 0 (0%)

DisEMBL Default DisEMBL 
parameters

(Linding et al., 
2003)

All (55063) All (5

Coiled coil 
regions

Presence of 
coiled coil 
regions

COILS:+ COILS Default COILS 
parameters

(Lupas, 1997) 7809 7809

Structural class 
derived from 
secondary 
structure 
prediction

Classification of 
proteins based 
on the prevalent 
type of 
secondary 
structure

Alpha/beta Predator Default Predator 
parameters

(Frishman and 
Argos, 1997)

52711 5271
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Transmembrane 
segments

Presence and 
number of 
transmembrane 
segments

TM 
(=transmembran
e domains are 
present), 1 TMs, 
12 TMs (the 
number of TM 
domains)

TMHMM Default TMHMM 
parameters

(Krogh et al., 
2001)

12437 2487

Signal peptide The presence of 
the signal peptide

SignalP:+ SignalP Default SignalP 
parameters

(Bendtsen et al., 
2004)

8066 8066

Protein localiza-
tion

Predicted cellular 
localization

Secretory 
pathway

TargetP Default TargetP 
parameters

(Emanuelsson et 
al., 2000)

18186 1818

SCOP super-
families

Classification of 
proteins into 
superfemilies 
based on their 
tertiary structure, 
corresponds to the 
third level of the 
SCOP hierarchy

a.47.3 (Cag-Z) RPS-BLAST E-Value 1E-10 (Lo et al., 2002) 29562 3736

Interpro Sequence domains 
found by HMM 
profile searches: a. 
primary domains; 
b. IPR domains

IPR003593 
(AAA_ATPase 
domain), PF02985 
(PFAM primary 
domain, HEAT 
repeat)

BLASTP E-Value 1E-10 
InterPro-Scan

Putin et al. (2006) a. 43829 b. 
42627

a. 14
8322

EC numbers Enzyme 
Commission 
Classification of 
enzymatic 
activities

Ec1.1.1.1 BLASTP E-Value 1E-10 (Webb, 1992) 11869 1561

COG Ortologous groups 
of genes from for 
prokaryotic and 
eukaryotic 
organisms 
organisms)

COG0582 
(Integrase), 
KOG1327 
(Copine)

RPS-BLAST E-Value 1E-10 (Tatusov et al., 
2003; Koonin et 
al., 2004)

33930 5027

Keywords Swiss-Prot or PIR 
keywords

Ligase BLASTP E-Value 1E-10 
BLASTP

(Wu et al., 2006), 
(Wu et al. 2002)

20128 8091

Functional 
categories

Two upper levels 
of the MIPS 
Functional Catalog

Fc40.20 (Cell fate: 
aging)

BLASTP E-Value 1E-10 (Ruepp et al., 
2004)

32248 4386

* For technical reasons GC content values were not available for Arabidopsis thaliana genes at the time of writing.
Features transferred by similarity (type 3, see Methods) are shown in italic.

Table 1: Annotation features used in this work (Continued)
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ciently significant degree of similarity. These features
constitute the main bulk of protein-associated informa-
tion available in the databases, and it is precisely this part
of protein annotation that is especially prone to errors due
to intrinsic limitations of annotation transfer by hom-
ology.

We are interested in applying negative association rule
mining for identifying errors in the annotation attributes
of Type 3 transferred by similarity from other proteins; in
the annotation entry above such features are shown in
italic. In our dataset there were the total of 848511 simi-
larity-derived features (67% of all features analyzed),
more than a half of which were constituted by functional
category assignments.

Extracting rules from PEDANT annotation
The annotation set describing 55063 genes in ten PED-
ANT genomes served as input data to extract negative
association rules using a modified version of the well-
established Apriori algorithm for association rule mining.
The basic Apriori algorithm, described in detail in [25], is
designed to find frequent item sets by consecutive expan-
sion of candidate sets at every step. It is based on the sim-
ple notion that all subsets of a frequent item set are also
frequent. In this work we used a version of this algorithm
designed for the efficient negative association rule produc-
tion [26] implemented and kindly provided by Christian
Borgelt (for initial software description see, e.g., [27]).

The application of the Apriori software to PEDANT anno-
tation results in a file containing one negative rule per
line. Each line lists the LHS and the RHS as well as several
numerical characteristics of the rule delimited by com-
mas. A typical rule line in the output file looks like this:

"fc34.11 & fc36, not length:S, 0.028, 1560, 0.895, 49286,
0.028, 1558, 0.999, 1.116, 0.003, 161.669"

This notation means that proteins possessing FunCat
labels 34.11 ("Cellular sensing and response") and 36
("Interaction with the environment (systemic)") are
unlikely to be of small (less than 120 amino acids) length.
The LHS items are joined by the "&" symbol and are fol-
lowed by the RHS (here – a negation of the annotation
feature), and the list of numerical attributes of the rule:
coverage, coverage count, RHS coverage, RHS coverage
count, support, support count, strength, lift, leverage, and
leverage count. In addition to "Support count", "Coverage
count" and "Strength", important for positive association
rule selection [18] (1560, 1558 and 0.999, respectively, in
our example), the numerical parameter "Leverage" (or
"interest of the rule", as alternative name) is also very
important in the case of negative rules. All existing algo-
rithms allow calculating negative association rules effec-

tively only using a certain threshold on the minimal
leverage or leverage count. Here, if not specified other-
wise, all rules with the support and the leverage counts of
at least 100 proteins and strength of at least 0.1 were
retained for further analysis.

Analysis of taxon specificity
A considerable and arguably the most valuable part of
PEDANT annotation involves assignments of functional
categories based on the MIPS FunCat [15]. A large fraction
of negative association rules included a taxon-specific
FunCat label (e.g., fc75.03 – "animal tissue") on one side
of the implication and the taxon of protein origin contra-
dicting this specificity (in the given case, Bacteria or
Archaea or Viruses for fc75.03) on the other. Among all
184 different FunCat labels (2 upper levels of the hierar-
chy) used in this study 71 were taxon-specific. For exam-
ple, one of the taxon-specific rules found was:

"fc75.03 & fc34.11 & fc10.03 & fc20, not Bacteria, 0.006,
344, 0.647, 35620, 0.006, 342, 0.994, 1.537, 0.002,
119.467".

All rules of this kind are a direct consequence of the taxon-
specific nature of the underlying (here fc75.03) FunCat
labels. Some of these rules may have exceptions due to
annotation transfer by homology between proteins from
different taxonomic groups. We classify such cases as
annotation errors according to the general procedure.

Manual verification of the rules
For manual verification of negative association rules we
randomly selected a limited sample of protein entries
from the PEDANT annotation set that constituted excep-
tions from rules and could not be corrected by the taxon
specific analysis explained in the previous section. Anno-
tation features of these proteins occurring either in the
LHS or in the RHS of the rules were subjected to careful
manual analysis by an experienced protein annotator
according to the established procedures routinely used at
MIPS for genome annotation (see, e.g., [28]). These
include assessment of similarity hits and predicted pro-
tein features as well as in-depth examination of biological
literature describing experimental studies. An exception
was classified as an error if one of the features in the LHS
or RHS of the rule was found to be assigned wrongly to the
given protein entry. We then calculated the error rate
among all manually analyzed exceptions according to the
following formula:

(percentage of exceptions classified as annotation errors 
among all manually verified exceptions * number of 
exceptions in rules not involving 'taxon specificity' + 

number of exceptions from 'taxon specific' rules)/overall 
number of exceptions.
Page 6 of 10
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Manual verification of annotation features
We filtered out wrongly assigned taxon-specific FunCat
labels and selected randomly a limited sample among all
remaining homology-transferred annotation features. The
accuracy of the feature assignment was thoroughly veri-
fied by an experienced annotator. All verified annotation
attributes were divided into 3 categories: true assign-
ments, false assignments, or "not known". The latter cate-
gory was selected if the evidence for a given assignment
was not sufficient to make a judgment, but the feature did
not obviously contradict the nature of the protein (e.g.,
the keyword "Zymogen" in the annotation of the lyso-
somal Pro-X carboxypeptidase from Arabidopsis thaliana,
code "At5g65760"). Features of this category were
excluded from further analysis and were not taken into
account while estimating the error level. For example, if in
a set of 100 features selected for manual verification 40
features were classified as 'errors', 56 as 'correct assign-
ments', and 4 as 'not known', then the final estimate of the
error level in this sample was 100*40/(100-4) = 42%.

Results and discussion
Statistics of negative association rules in the PEDANT 
annotation
Application of the Apriori algorithm to the annotation set
extracted from PEDANT resulted in 9591 negative rules
(see Additional file 1). For example, one of the most triv-
ial rules found was "Bacteria, not Eukaryota, 0.353,
19443, 0.413, 22765, 0.353, 19443, 1.000, 2.419, 0.207,
11404.573". This rule is satisfied in all possible cases and
thus its strength is 1.0 with no exceptions. In total there
were 2273 such rules calculated. Much more interesting
rules in the context of this study are those of strength very
close, but not equal to 1.0. These rules have a small
number of exceptions that may constitute annotation
errors. There were 7318 such rules with 26969 exceptions
in total. An example of such rules is "Nuclear protein, not
Bacteria, 0.033, 1808, 0.647, 35620, 0.033, 1798, 0.994,
1.537, 0.011, 628.413". This statement which is obvious
from the biological point of view nevertheless does not
make an absolute rule; in fact out of all 1808 protein
entries annotated by the keyword "Nuclear protein" in the
PEDANT database only 1798 actually have eukaryotic ori-
gin. The ten proteins constituting exceptions from this
rule (for example, the oligoribonuclease from Mycobacte-
rium tuberculesis, PEDANT code gi_15609648) simply
inherit this keyword from their eukaryotic homologs. In
our example, the homolog is human oligoribonuclease
(PEDANT code gi_116242694, UniProt code
ORN_HUMAN), one of the alternatively spliced isoforms
of which is localized to the nucleus.

Some aspects of negative rule statistics differ significantly
from positive association rules due to vastly different item
frequencies. Because annotation items themselves are

rare, and most items are in fact extremely rare (e.g., the
PFAM domain PF01029 is only found in 12 (0.02%) of
proteins analyzed), their negations used in negative asso-
ciation rule mining are unavoidably very frequent. This
simple circumstance makes the calculation of negative
rules computationally much more challenging compared
to positive rules and necessitates the application of much
stricter thresholds on the rules of interest. While analyzing
rule strength distribution we considered only the rules
exhibiting strength higher than 0.1. The number of
weaker rules (strength below 0.1) is too high due to the
combinatorial explosion caused by random feature com-
binations, making their analysis computationally prohib-
itive. However, even in the strength interval 0.1 – 1.0 the
number of negative rules is several orders of magnitude
higher that the number of positive rules. To make the task
computationally tractable we additionally imposed a
threshold on minimal leverage which effectively helps to
select only the most 'non-random' rules (see Methods)
and eliminates all rules with the strength below 0.97. The
distributions of negative rule strength with different min-
imal coverage counts are plotted in Figure 1.

The fraction of proteins in the PEDANT database consti-
tuting exceptions from strong rules in the strength interval
between 0.97 and 1.0 as well as the fraction of relevant
(homology-transferred) features participating in such
rules is very low. In total, we identified 6875 features
(0.8%) in the annotation of 1031 proteins (1.9%) as
potential annotation errors.

Distribution of negative association rule strength (probability that a given database entry will satisfy the right side of the rule given that it satisfies the left side of the rule)Figure 1
Distribution of negative association rule strength 
(probability that a given database entry will satisfy the right 
side of the rule given that it satisfies the left side of the rule). 
Minimal coverage counts (number of entries in the database 
that possess all features from the left hand side of the rule) 
used are 100 (blue), 200 (pink), and 500 (green). The thresh-
old for minimal leverage count (difference of the actual rule 
frequency and the probability to find it by chance with the 
given frequencies of its RHS and LHS) was set to 100 in all 
calculations
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Analysis of potentially erroneous annotation features
Taxon-specific rules
In order to estimate the number of actual annotation
errors among exceptions from strong rules the first test
was designed to exclude the influence of taxon specificity.
It turned out that a very large number of rules combined
FunCat labels on one side of the rule with the taxon of the
protein origin on the other side (we used here only the
highest-level taxons, namely Eukaryota, Bacteria, Archae,
and Viruses). There were 3159 rules (33% of all negative
rules) with such structure. Because many FunCat labels
are taxon-specific (see Methods), these labels should ide-
ally only be present in the annotation of the genes belong-
ing to the corresponding taxa; homology-based transfer of
such annotation attributes is highly prone to error. Where
a taxonomically specific FunCat label is incompatible
with the known gene taxon, it is the FunCat assignment
which is guaranteed to be erroneous, since the protein ori-
gin is doubtlessly known. This simple test resulted in
automatic correction of almost 50% of all exceptions in
our set of strong negative rules. Figure 2 shows how the
fraction of corrected exceptions among all exceptions
depends on the rule strength.

Performance of the method
After the filter for taxonomy-specific FunCat labels was
implemented, the set of 6432 rules formed all negative
rules for our annotation sample. These rules involved
4687 transferable features (0.6% of all features) in the
annotation of 822 proteins (1.5% of all proteins).

To estimate the prevalence of errors among exceptions not
corrected by the taxonomy procedure described above we
selected randomly a sample of 100 rules and analyzed
their exceptions manually. In 96% of examined excep-
tions at least one of the features constituting the rule was
assigned wrongly to the given protein. The overall specifi-
city of the approach was estimated to be as high as 98%:
practically all feature combinations associated with excep-
tions included at least one annotation error.

The specificity of the negative rules is thus much higher
than that in the case of positive rules [18] which was esti-
mated to be around 68% based on careful manual verifi-
cation. By design, exceptions from negative association
rules can only reveal over-annotation, i.e. erroneous
assignment of attributes to protein entries, while under-
annotation (missing attributes) cannot be detected. While
manually curated databases are typically under-annotated
and this approach is not efficient for them (the perform-
ance of the method was very low when tested on the
Swiss-Prot database, data not shown), over-annotation is
a typical problem of many automatic software pipelines,
including PEDANT, and the ability to correct this type of
errors using negative rule mining is valuable. At the same
time, the approach based on exceptions from strong neg-
ative rules yields much smaller coverage than positive rule
mining. As seen in Figure 3, negative rule mining allows
identifying 11 times fewer annotation features (0.6% for
negative rules versus 6.7% for positive rules) that partici-
pate in incompatible feature combinations. More than

Coverage of the negative and positive rule mining approachesFigure 3
Coverage of the negative and positive rule mining 
approaches. The numbers represent the percentage of all 
annotation features identified as potentially erroneous by 
each individual method and by both of them

Features flagged

by negative rule

mining

Features flagged by

positive rule mining

6.5%

0.2%

0.4%

Fraction of annotation terms corrected based on the taxo-nomic information among all rule exceptionsFigure 2
Fraction of annotation terms corrected based on the 
taxonomic information among all rule exceptions. 
The number of all exceptions found in each strength interval 
is shown above each bar.
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two thirds of these features do not get detected by positive
rule mining.

What fraction of the annotation features flagged by the negative 
rules are actual annotation errors?
Our approach is designed to flag incompatible feature
combinations for subsequent manual inspection rather
than to automatically correct annotation errors in an
unsupervised fashion. With the exception of taxon-spe-
cific rules where FunCat labels incompatible with the tax-
onomic origin of a protein are guaranteed to be errors, we
do not know exactly which feature of a flagged feature
combination is wrong. Besides there always exists a
chance that all features constituting an exception from a
strong negative rule are nevertheless correctly assigned
and that the exception is in fact biologically motivated.

It would be desirable to validate our predictions against
high-quality manually curated databases such as Swiss-
Prot or BRENDA [29], but this, unfortunately cannot be
done at sufficiently large scale. As discussed above most of
the annotation errors found in PEDANT are over-predic-
tions which can not easily be confirmed by comparison
with Swiss-Prot entries as the latter tend to be under-
annotated. If a certain feature is present in a Swiss-Prot
entry, it is almost certainly correct, however, if a feature is
absent no statement can generally be made. BRENDA
focuses on one aspect of protein annotation – EC num-
bers – providing detailed classification of enzymes at four
hierarchical levels. Correspondingly, there are only few
proteins associated with each four digit EC number while
association rule mining relies on frequent annotation
items. In this study rules were required to have coverage
count of at least 100, and only six EC numbers satisfied
this condition.

We therefore attempted to estimate the fraction of actual
annotation errors among those features flagged as suspi-
cious and, for comparison, in non-flagged features by
careful manual inspection as described in Methods. As seen
in Table 2, features flagged as suspicious are almost 1.4
fold enriched in actual annotation errors than the
unmarked ones.

Conclusion
Based on our assessment it becomes apparent that almost
all incompatible feature combinations found by negative

association rule mining include at least one wrongly
assigned annotation term. The fraction of individual fea-
tures flagged as suspicious is about 0.6% from the total
number of features assigned by PEDANT and it is signifi-
cantly enriched in annotation errors. Moreover, roughly
two thirds of such erroneous assignments are not identi-
fied by positive rule mining. We conclude that applying a
combination of positive rule mining described earlier [18]
and negative rule mining presented creates an opportu-
nity to enhance the fidelity of genome annotation in two
alternative ways. First, insights about the sources of anno-
tation errors gained in this investigation can be used to
adjust the automatic annotation pipeline in order to min-
imize generation of these errors in the future. Examples of
such possible modifications include taxon-specific hom-
ology-based transfer of functional categories and utiliza-
tion of individualized similarity thresholds for various
features. Second, suspicious features can be visually
marked for subsequent inspection by the user. While this
approach is better suited for manually curated databases
where errors actually get corrected by human experts, it is
also useful for automatic systems such as PEDANT where
users get alerted to specific less trusted annotation items
that should be used with caution.
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