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An important and still unsolved problem in gene
prediction is designing an algorithm that not only pre-
dicts genes but estimates the quality of individual pre-
dictions as well. Since experimental biologists are
interested mainly in the reliability of individual pre-
dictions (rather than in the average reliability of an
algorithm) we attempted to develop a gene recogni-
tion algorithm that guarantees a certain quality of
predictions. We demonstrate here that the similarity
level with a related protein is a reliable quality esti-
mator for the spliced alignment approach to gene rec-
ognition. We also study the average performance of
the spliced alignment algorithm for different targets
on a complete set of human genomic sequences with
known relatives and demonstrate that the average
performance of the method remains high even for very
distant targets. Using plant, fungal, and prokaryotic
target proteins for recognition of human genes leads
to accurate predictions with 95, 93, and 91% correla-
tion coefficient, respectively. For target proteins with
similarity score above 60%, not only the average cor-
relation coefficient is very high (97% and up) but also
the quality of individual predictions is guaranteed to
be at least 82%. It indicates that for this level of simi-
larity the worst case performance of the spliced align-
ment algorithm is better than the average case perfor-
mance of many statistical gene recognition methods.
© 1998 Academic Press

INTRODUCTION

The large-scale sequencing projects have motivated
the need in a new generation of algorithms for compu-
tational gene recognition in long uncharacterized DNA
sequences. Recently the traditional statistical ap-
proach to recognition of protein-coding genes was sup-
plemented by similarity-based approaches (for techni-
cal reviews on computer-assisted functional mapping
of DNA sequences see Gelfand, 1995; Fickett, 1996a;

introduction for users is in Fickett, 1996b). Similarity
search can be used to detect genes (Gish and States,
1993) and, in conjunction with the statistical analysis,
to predict exon–intron structure of eukaryote genes.
Indeed, similarity to an already known gene can pro-
vide additional statistical parameters (Snyder and
Stormo, 1995), allow the program to choose between
several suboptimal genes (Rogozin et al., 1996), and
serve as the main scoring function for candidate pro-
tein-coding segments (Hultner et al., 1994). Some ex-
isting servers perform database simiarity search for a
predicted gene as a standard postprocessing procedure
(Uberbacher et al., 1996). These approaches utilize the
large amount of previously sequenced DNA and are
likely to become the method of choice in the future.

Consistent realization of the similarity-based gene
recognition is provided by the spliced alignment algo-
rithm implemented in Procrustes software (Gelfand et
al., 1996a). The algorithm explores all possible exon
assemblies in polynomial time and finds the multiexon
structure with the best fit to a related protein. This is
the main feature of the algorithm distinguishing it
from other programs.

Given a genomic sequence, the spliced alignment al-
gorithm first finds candidate exons. This can be done by
selecting all sequence fragments between potential ac-
ceptor and donor sites (i.e., between AG and GU
dinucleotides) with further filtration of this set (in a
way that does not lose the actual exons). The resulting
set, of course, can contain many false exons, and cur-
rently it is impossible to distinguish all actual exons
from this set by statistical methods. Instead, the
spliced alignment algorithm explores all possible as-
semblies of potential exons and finds an assembly with
the highest similarity to the related target protein.

One of the main problems in gene recognition is
designing an algorithm that would not only predict
genes, but estimate the quality of individual predic-
tions as well. The average performance of an algorithm
can be estimated using correlation between the pre-
dicted and the correct gene structure (Burset and
Guigo, 1996). However, in a real situation the correct
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gene structure is unknown, and no algorithm provides
an estimate for the quality of obtained gene predic-
tions. At best, some algorithms assign quality indica-
tors to particular exons (Uberbacher and Mural, 1991).

Since experimental biologists are more interested in
reliability of individual predictions than in the average
performance, it is important to develop gene recogni-
tion algorithms with guaranteed prediction quality.
Recently Sze and Pevzner (1997) used the quality and
certainty of fit of a candidate exon to the respective
region in the target protein as an indicator of the
prediction quality of individual exons. For human
genes predicted by spliced alignment with mammalian
targets all exons are guaranteed to be correct in one-
third of cases, and at least one exon is guaranteed in
half of cases.

The present study analyzes the overall certainty of
spliced alignment predictions with both mammalian
and more distant targets and provides the estimate
and bounds for the correlation coefficient between the
predicted and the actual gene given the obtained sim-
ilarity score. The spliced alignment algorithm is tested
on the set of all completely sequenced human genes
with a known related protein from another species. We
study the dependence between the level of protein sim-
ilarity and the accuracy of predictions and determine
the ranges of guaranteed performance. In particular,
we demonstrate that if the similarity score is 60 6 5%,
the average correlation is 95%, whereas the correlation
for individual predictions is always higher than 75%; it
is higher than 80% in more than 97% of cases and
higher than 95% in more than 70% of cases, and the
prediction is exact in approximately half of all cases.
We assume that predictions with a similarity score
exceeding 30% are reliable and consider the remaining
predictions tentative. At that, the average correlation
of reliable predictions for all groups of eukaryotic tar-
gets, including plants and fungi, exceeds 93%, and it is
91% for prokaryotic targets. The accuracy of tentative
predictions is lower but still higher than the accuracy
of statistical gene recognition algorithms as long as the
similarity score is above 20%. We also analyze various
filtration procedures and demonstrate that stronger

filtration provides better results for distant targets
despite the danger of overfiltering true exons.

DATA

All human DNA sequences from GenBank (Benson et
al., 1997) and EMBL (Stoesser et al., 1997) containing
completely sequenced genes were considered. This was
done by automated search for text terms complete gene
or complete CDS in the human divisions of GenBank
and EMBL (Spring 1996 releases). This preliminary
list was supplemented by sequences from Snyder and
Stormo (1995), Burset and Guigo (1996), and Gelfand
et al. (1996b).

A syntactic check was performed first on feature
tables to exclude mRNA genes, incomplete and alter-
natively spliced genes, sequence fragments containing
multiple genes, and entries with errors in feature ta-
bles (in-frame stop codons, missing start or stop
codons). We also removed genes with introns shorter
than 70 nucleotides, which do not occur in human
genes (Sharp, 1994) and are an indication of an error in
the feature table. Genes having unconventional splic-
ing sites breaking the GU–AG rule also were removed.
Such sites occur in less than 1% of human genes (Jack-
son, 1991).

Target sequences were selected using the Entrez
browser (Schuler et al., 1996). Fifteen genes having no
nonprimate relatives and all histone genes were ex-
cluded from the sample. For each gene one highest
scoring target protein in each of the following catego-
ries was considered: mammals (not primates), birds,
cold-blooded vertebrates, insects, other animals,
plants, fungi, other eukaryotes, and prokaryotes.
Genes having the same highest scoring mammalian
relatives were considered homologous. Only the long-
est genomic sequence fragment from each group of
homologues was retained. Distribution of local similar-
ities (negative logarithms of BLAST probabilities as
given in Entrez) is shown in Table 1.

The resulting sample consists of 256 sequences and
is available from the Procrustes WWW site. The aver-
age sequence length is approximately 8100 nucleo-

TABLE 2

Distribution of the Length of Genomic DNA

Length (kb) ,5 5–10 10–15 15–20 20–30 30–40 55 180
No. of seq. 126 81 25 8 5 9 1 1

TABLE 1

Distribution of the Local Similarities (Negative Logarithms of BLAST Scores)

Entrez score ,3 3 4 5 6 7 8 9 10–11 12–13 14–15
No. of seq. 0 5 30 22 23 18 14 11 29 26 27

Entrez score 16–17 18–19 20–29 30–39 40–49 50–59 60–99 1001
No. of seq. 17 19 91 74 54 37 95 85
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tides; the longest sequence in the sample exceeds
180,000 nucleotides. The distribution of sequence
lengths is shown in Table 2. The number of exons in
genes ranges from 1 to 54 (Table 3), and their mini-
mum length is 3 bp for initial exons, 17 bp for internal
exons, and 5 bp for terminal exons (Table 4).

METHODS

Filtration. Initially all initial exons bounded by a start codon
,ATG and a candidate donor site .GT, internal exons bounded by an
acceptor site AG, and a donor site .GT, terminal exons bounded by
an acceptor site AG, and a stop codon .TGA, .TAA, or .TAG are
considered (, and . denote the left and right boundaries of a coding
region, respectively). Note that we use the term exon as a synonym
for translated part of an exon, which is the traditional although
biologically incorrect use of this term in computational molecular
biology. Internal exons should be longer than 16 nucleotides.

Filtration consists of two weak filters removing clearly abnormal
exons and a final filter of adjustable strictness.

The first filter removes exons with weak splicing sites as estimated
by positional nucleotide weight matrices (Gelfand et al., 1996b). The
threshold is set very low and only two actual acceptor sites are
filtered out at this step.

At the second step the genomic sequence is divided into subfrag-
ments of length 10 kb with 2.5 kb of overlap. Further filtration is
performed independently in each subfragment and the candidate
exons are evaluated by a scoring function taking into account
strength of the splicing sites and the coding potential (Gelfand et al.,
1996b). One thousand highest scoring exons are retained in each
subfragment. This filter loses 10 actual exons: 1 initial, 6 internal,
and 3 terminal.

Overall, the two preliminary filters decrease the number of candi-
date exons approximately 15-fold, while losing 12 actual exons in the
entire sample. It should be noted that the statistical properties of
these exons are so unusual that they will likely be lost by any
conventional gene recognition algorithm. At the same time, prelim-
inary filtering sharply decreases the number of candidate exons,
making the final filter more robust.

At the main filtration step chains of exons of length 1 through 3
with consistent reading frame (no in-frame stop codons) and introns
longer than 70 nucleotides are considered. Each chain is scored by
the statistics-based function. Denote the score of a chain G by ?G?. An
exon score is now defined as either

P~e! 5 O
G ] e

ec|G|,

where c is some fixed constant ( partition function rescoring), or

B~e! 5 max
G ] e

|G|

(best chain rescoring).
The candidate exons are then ranked in the decreasing order of

their scores and the given proportion of exons is retained for the
spliced alignment procedure. The ranking is performed indepen-
dently for initial, internal, and terminal exons. The proportion of
these three classes of exons in the filter output is 1:3:1, respec-
tively.

Thus the filtering is controlled by two switches (the maximal
number of exons in chains E 5 1, 2, or 3 and the use of P or B scores)
and the filtration stringency parameter F. This parameter deter-
mines the number of exons dependent on the genomic sequence
length. Following preliminary analysis, three values of this param-
eter have been considered: 1 exon per 14 nucleotides (F 5 14, weak
filtration), 1 exon per 33 nucleotides (F 5 33, moderate filtration),
and 1 exon per 100 nucleotides (F 5 100 strong filtration). Note that
if E 5 1 all filters coincide.

Table 5 presents the results of comparison of different filters.
Filters based on chains of two and three exons (E 5 2 or E 5 3)
outperform single-exon filters (E 5 1) in the entire range of filtration
stringency.

The best weak filtration mode (F 5 14) seems to be partition
function rescoring (P) with two-exon chains (E 5 2). Relaxing the
filtration parameters further does not recover more than one lost
exon, while adding many more false exons.

The optimal mode for moderate and strong filtration (F 5 33 and
F 5 100) is best structure rescoring (B) with three-exon chains (E 5
3). These options were fixed for further analysis.

Single-exon genes were considered separately in an analogous
manner. The minimum length of such genes was set to 180 nucleo-
tides; one candidate exon was retained per 200 bp of the genomic
sequence.

Spliced alignment. UNIX version of the Procrustes was used for
the sample processing. The WWW version is available at http://www-
hto.usc.edu/software/procrustes.

The spliced alignment score was computed using PAM120
amino acid substitution matrix (Altschul, 1991) with linear gap

TABLE 3

Distribution of the Number of Exons in Human Genes

No. of exons 1 2 3–5 6–10 11–20 21–30 38 54
No. of seq. 28 26 111 70 16 3 1 1

TABLE 4

Distribution of the Exon Lengths in 202 Human Genes with Three or More Exons

202 initial exons: average length 155 bp, min. length 3 bp, max. length 3051 bp

Len. 1–5 6–10 11–20 21–30 31–50 51–75 76–100 101–150 151–200 201–300 301–1000 .1000
No. 3 3 11 6 20 47 25 36 15 16 17 3

907 internal exons: average length 139 bp, min. length 17 bp, max. length 885 bp

Len. 1–20 21–25 26–30 31–40 41–50 51–75 76–100 100–125 126–150 151–200 200–300 .300
No. 1 6 4 21 24 93 111 164 159 195 103 26

202 terminal exons: average length 191 bp, min. length 5 bp, max. length 1546 bp

Len. 1–5 6–10 11–20 21–30 31–50 51–75 76–100 101–150 151–200 201–300 301–1000 .1000
No. 1 2 6 7 11 21 19 54 35 16 27 3
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penalties (the preliminary analysis demonstrated that the influ-
ence of the matrix on the algorithm performance is minor; other
gap scoring schemes were implemented). This score was normal-
ized by division of the score of the (trivial) alignment of the target
protein with itself.

The quality of prediction was assessed using the correlation
coefficient between the predicted and the actual genes,

C 5
TP z TN 2 FP z FN

Î~TP 1 FP! z ~TN 1 FN! z ~TP 1 FN! z ~TN 1 FP !
,

where TP and TN are the numbers of correctly predicted coding (true
positive) and noncoding (true negative) nucleotides, respectively, FN

is the number of missed coding (false negative) nucleotides, and FP is
the number of noncoding nucleotides predicted to be coding (false
positive).

RESULTS

The average correlation coefficients for different
groups of targets are presented at Table 6. It should be
noted, however, that the target group is a very rough
indicator of the expected prediction quality, since the
mutation rates differ significantly between protein
families within the same species. Further, since the
targets have been chosen by the BLAST database
search (via Entrez), many targets have only local sim-
ilarities with the analyzed genes and thus produce
artifacts when the (global) spliced alignment is per-
formed.

A better indication of the expected recognition
quality is provided by the normalized spliced align-
ment score. The scatter plots of the correlation coef-
ficient versus the alignment score (Fig. 1) demon-
strate that high prediction quality is guaranteed if
the alignment score is high. The same figures feature
plots of similarity levels providing 100, 95, 90, and
80% guarantee of obtaining the desired correlation
coefficient given the observed alignment score and
the plot of the average correlation coefficient for the
given alignment score. The plots in Fig. 2 provide an
estimate for the proportion of predictions having the
correlation exceeding 80 –100% given the alignment
score.

Superimposed filtration plots (Fig. 3) demonstrate
that if the analyzed gene is close to the target pro-

tein, the weak filter provides better recognition.
However, as the distance between the analyzed gene
and the target increases, moderate filtration be-
comes beneficial. An explanation for this phenome-
non is that stronger filtration decreases the number
of candidate exons and thus eliminates competitors
for the true exons when the similarity is low. How-
ever, the strong filtration (one candidate exon per
100 nucleotides) loses too many true exons, and its
performance is inferior compared both to the weak
and to the moderate filtration at the entire range of
distances (data are not shown).

The same results can be seen on Table 7, in which
results of predictions with the alignment score higher
than 30% are given. These data confirm the above
observation: weak filtration provides better results
with mammalian targets, whereas moderate filtration
is preferable with more distant target groups.

DISCUSSION

An important feature of the spliced alignment algo-
rithm is the possibility of estimating the reliability of an

TABLE 5

Comparison of Different Filtrations

E

F

100 50 33 25 20 14 10 No filter

1 — 117 160 186 202 214 224 239 256
2 P 148 192 210 219 228 239 240 256
2 B 144 173 198 214 229 234 240 256
3 P 138 180 206 221 230 236 241 256
3 B 162 198 218 227 231 234 240 256

Note. In each cell the number of sequences in which no overfiltration occurs is shown. Lanes: type of filtration described by E—number of
exons in chains; P or B—resp. partition function rescoring or best structure rescoring. Columns: F—stringency of filtration (sequence length
divided by the number of candidate exons).

TABLE 6

Results of Prediction for Different Groups of Targets

Target N W M S

Human 256 99.5 98.4 94.9
Mammals 252 96.9 96.4 93.2
Birds 94 88.2 89.7 88.0
Cold-blooded vertebrates 98 87.9 88.3 87.2
Invertebrates 60 76.8 76.7 71.6
Other animals 39 78.0 78.3 73.1
Plants 37 86.2 86.9 82.6
Fungi 45 84.9 85.4 78.6
Other eukaryotes 14 84.1 85.5 75.2
Prokaryotes 32 79.9 81.7 78.3

Note. The average correlation coefficients are shown. Columns:
N—number of genes with targets from the given group; W—weak
filtration (F 5 14, E 5 2, partition function rescoring); M—moderate
filtration (F 5 33, E 5 3, best structure rescoring); S—strong filtra-
tion (F 5 100, E 5 3, best structure rescoring). The first lane (“hu-
man”) corresponds to the spliced alignment with the encoded protein
itself as the target and is presented to demonstrate the influence of
overfiltration.
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individual prediction by the spliced alignment score. Plot
of the alignment score along the sequence (provided by
Procrustes WWW server) allows one to view the rela-
tively more or less reliable regions of the prediction. A
different approach to the estimation of prediction reliabil-
ity, based on construction of suboptimal spliced align-
ments and assigning the quality of fit to individual exons,
is described in Sze and Pevzner (1997).

Most errors of the spliced alignment occur when
there are unrelated domains in the target and the
analyzed gene. This situation can be diagnosed by a
very low spliced alignment score, and indeed, compar-
ison of Tables 6 and 7 demonstrates that setting a
recognition threshold sharply improves the average
correlation between predicted and actual genes. In
such cases it is reasonable to perform local spliced

FIG. 1. Dependence of the correlation coefficient on the spliced alignment score. Scatter plot: spliced alignment score (horizontal axis),
correlation coefficient (vertical axis); numerous points in the right upper corner are suppressed. Upper curve: average correlation coefficient.
Other curves: correlation coefficient guaranteed with certainty p 5 100, 95, 90, 80 (upward). If a curve p passes a point (s, c), then at least
p among predictions with the score s have the correlation coefficient exceeding c. Top plot: weak filtering. Bottom plot: moderate filtering.

336 MIRONOV ET AL.



alignment of the conserved regions only. This is an
objective for further development.

Based on computer simulations, Gelfand et al.
(1996a) suggested that spliced alignment with rela-
tively strong filtration will perform better for distant

targets, despite the risk of losing some true exons due
to overfiltration. This conjecture was based on the fol-
lowing reasoning: the loss of some true exons is justi-
fied by the strong reduction of the number of candidate
exons with the consequent decrease of combinatorial

FIG. 2. Certainty level for predictions given the spliced alignment score. Horizontal axis—alignment score. Vertical axis—proportion of
sequences with the correlation coefficient exceeding the given threshold. Plots correspond to thresholds c 5 80, 90, 95, 100% (from top down).
If a curve c passes a point (s, p), then at least p among predictions with the score s have the correlation coefficient exceeding c. Top plot: weak
filtering. Bottom plot: moderate filtering.
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number of variants for the spliced alignment algorithm
and sharp improvement of the alignment-based predic-
tions for diverged targets.

This conjecture has been confirmed by the present
analysis which used not only close, but some very dis-
tant targets (Table 1). However, excessively strong fil-
tration (one candidate exon per 100 nucleotides) loses
too many true exons. The tradeoff between overfiltra-
tion and excessive combinatorial flexibility depends on
the similarity level, and the shift from weak to moder-
ate filtration occurs at approximately 50% similarity
level, as measured by the spliced alignment score (Fig.
3). It should be noted, however, that even for very close
targets some filtration is necessary due to the mosaic
effect (Sze and Pevzner, 1997).

Further development of Procrustes is directed toward
construction of the local spliced alignment for analysis of
genomic fragments containing incomplete genes (this is
simple algorithmically, but additional work is required to
derive scoring schemes and reliability indicators) and

spliced alignment with nucleic acid targets applicable for
gene recognition given noisy EST data.

SYNOPSIS

The current version of Procrustes http://www-hto.usc.
edu/software/procrustes analyzes complete genomic
and target sequences. For close targets the weak (de-
fault) filtering should be used and Fig. 2 can be used to
estimate the reliability of predictions. If a distant tar-
get is used (spliced alignment score is below 50%) the
spliced alignment should be repeated with moderate
filtration (one exon per 33 nucleotides). Predictions
with a score less than 30% should be considered ten-
tative. Whenever possible, spliced alignment should be
done with several targets. The spliced alignment plots
(available through Procrustes WWW server) provide
additional information about the prediction quality. In
particular, a sharp local drop of the score for close
targets is an indication of exon loss or substitution by

FIG. 3. Certainty level for predictions given the spliced alignment score for different filtration modes. Axes as for Fig. 2.

TABLE 7

Results of Prediction for Different Groups of Targets with 30% Alignment Score Threshold

Target N (W) W N (M) M N (S) S

Human 256 99.5 256 98.4 256 94.9
Mammals 243 98.0 243 97.7 239 94.6
Birds 70 96.4 68 96.5 65 93.9
Cold-blooded vertebrates 72 92.8 71 93.4 67 92.6
Insects 38 94.1 36 94.3 30 92.1
Other animals 26 93.2 25 96.5 23 92.2
Plants 24 95.2 24 94.2 21 89.4
Fungi 31 93.2 30 92.5 28 88.4
Other eukaryotes 10 96.1 10 96.6 8 90.6
Prokaryotes 15 87.4 14 90.5 10 88.0

Note. The average correlation coefficients are shown. Columns: N—number of genes with targets from the given group is shown for each
mode of filtration (columns 2, 4, and 6); the remaining notation is as in Table 6.
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spurious exons due to overfiltering. In this case, the
weakest possible filtration (one exon per 10 nucleo-
tides) can be attempted.
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