
INTRODUCTION

Profiles introduced by Gribskov and co-workers
[1] have proved to be a valuable tool for finding weak
homologies between distant proteins belonging to one
family or superfamily and for improving sensitivity of
database searches [2,3]. Two views have been estab-
lished on the composition of profiles: continuous and
discrete. The continuous model of profiles imposes no
restriction on amino acids and their counts present in
an alignment column, while the discrete model as-
sumes that only certain amino acids can be found at a
certain position in the multiple alignment of a protein
family.

The efforts of several workers were directed to
improve profiles by sequence weighting [4–8] and by
introducing pseudocounts [9–12]. As pointed out by

Tatusov and co-workers [2], the most efficient me-
thod in improving the quality of profiles by adding
pseudocounts is the Dirichlet mixture. This mixture is
a linear combination of nine Dirichlet distributions.
Although no restrictions are imposed on frequency
profiles in this model, nine Dirichlet distributions can
be considered as discrete condensation points in a
20-dimensional space.

The discrete view on profiles is exemplified by
the PROSITE database [13], which states what kind
of amino acid can be present in a single position of a
protein signature.

In this work, we will present strong evidence
that all 20 profiles can be regarded as a result of evo-
lution of just one ancestral amino acid. If a multiple
protein alignment has enough sequences, we can
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Abstract—BLOSUM and PAM series of protein substitution matrices are popular tools for scoring protein
pairwise and multiple alignments. For protein multiple alignments there exists another representation of an
evolving column, based on a set of predefined frequency profile patterns. For conserved sites, these profile
patterns represent stationary points in a 20-dimensional profile space. There are 20 such patterns. All of
them were derived from the BLOCKS database by applying a special clusterization procedure to frequency
profiles obtained from BLOCKS alignment columns. To understand the nature of these clusters, random
protein sequences were generated where all columns were obtained from a single amino acid type by apply-
ing transition probabilities to it, and the same clusterization procedure was applied to the generated fre-
quency profiles. Similar twenty clusters were obtained. This means that for conservative columns, all amino
acids in that column are derived from a single ancestor amino acid by a substitution random process with
standard transition probabilities. For non-conservative columns there are, generally, no regularities in the
amino acid types present therein. Based on the COG database, a formula was obtained to distinguish be-
tween functionally important and unimportant columns. If the odds ratio of likelihoods of the most probable
ancestral amino acid to the third most probable ancestral amino acid exceeds a critical value, then this col-
umn is predicted to be conservative and it is the result of evolution of the ancestral amino acid. Otherwise,
this column is considered to be a “garbage” column. When building a consensus sequence from a multiple
alignment, we can represent this column as a “garbage” symbol having zero value with any amino acid in a
substitution matrix.
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assign any column to a profile cluster with a high de-
gree of confidence.

METHODS

Computing Frequency Profile
Clusters from BLOCKS

To find profile clusters, we used the BLOCKS
database Version 12.0 [14]. Each block from BLOCKS
was processed to give a multiple alignment of se-
quences in the following way. The first sequence
was extracted from the block. Assume that we pro-
cessed a certain number of sequences in a block. If
the next sequence to be processed is at ≤65% iden-
tity with the previous sequences that form the grow-
ing multiple alignment. Thus all sequences in the re-
sulting multiple alignment are at ≤65% identity with
each other. If we convert blocks to multiple align-

ments without such filtering many similar sequences
can distort frequency profiles. Only alignments hav-
ing at least 15 sequences were considered for further
processing to have enough statistical material. To-
tally, 39 253 alignment columns were obtained. The
average number of sequences in a multiple align-
ment was 32. The average protein identity in a multi-
ple alignment was 27%.

Then each alignment column was converted to
the frequency profile using a simple formula:

,

where Ni is the number of times amino acid i occurs
in the column, N is the number of sequences in the
multiple alignment.

BIOPHYSICS     Vol. 48     Suppl. 1     2003

COLUMN  EVOLUTION  IN  MULTIPLE  ALIGNMENTS  OF  PROTEIN  FAMILIES S111

Table 1. Average profiles of frequency profile clusters obtained from BLOCKS. Dominating amino acids are in boldface

A C D E F G H I K L M N P Q R S T V W Y

1 0.486 0.022 0.014 0.023 0.015 0.062 0.008 0.030 0.023 0.038 0.015 0.016 0.016 0.017 0.019 0.081 0.041 0.059 0.003 0.011

2 0.039 0.702 0.010 0.010 0.014 0.019 0.007 0.014 0.009 0.024 0.008 0.014 0.010 0.008 0.011 0.033 0.025 0.030 0.004 0.010

3 0.032 0.004 0.522 0.081 0.008 0.030 0.018 0.011 0.035 0.016 0.006 0.069 0.017 0.026 0.022 0.048 0.028 0.015 0.003 0.009

4 0.055 0.004 0.086 0.427 0.009 0.023 0.015 0.017 0.066 0.026 0.009 0.032 0.020 0.057 0.039 0.045 0.033 0.024 0.003 0.011

5 0.027 0.008 0.008 0.011 0.528 0.012 0.012 0.046 0.011 0.092 0.023 0.009 0.009 0.009 0.013 0.019 0.020 0.040 0.021 0.080

6 0.053 0.007 0.025 0.020 0.010 0.658 0.009 0.011 0.024 0.015 0.006 0.033 0.013 0.013 0.018 0.043 0.019 0.016 0.003 0.007

7 0.025 0.005 0.022 0.021 0.027 0.017 0.581 0.014 0.025 0.024 0.007 0.040 0.011 0.035 0.026 0.028 0.018 0.016 0.008 0.048

8 0.033 0.009 0.007 0.010 0.039 0.011 0.006 0.437 0.012 0.138 0.031 0.009 0.008 0.008 0.011 0.016 0.026 0.169 0.005 0.016

9 0.045 0.005 0.028 0.057 0.010 0.023 0.019 0.022 0.401 0.035 0.011 0.038 0.017 0.051 0.113 0.044 0.038 0.027 0.003 0.012

10 0.036 0.010 0.008 0.014 0.052 0.013 0.008 0.103 0.015 0.500 0.049 0.009 0.009 0.013 0.016 0.019 0.023 0.077 0.007 0.019

11 0.045 0.010 0.008 0.015 0.039 0.013 0.008 0.064 0.013 0.139 0.450 0.014 0.008 0.026 0.015 0.024 0.029 0.060 0.006 0.016

12 0.033 0.007 0.062 0.033 0.011 0.043 0.029 0.015 0.042 0.021 0.008 0.476 0.014 0.030 0.033 0.066 0.042 0.017 0.003 0.015

13 0.055 0.005 0.027 0.034 0.013 0.025 0.011 0.019 0.036 0.030 0.007 0.018 0.559 0.020 0.025 0.045 0.030 0.029 0.004 0.010

14 0.041 0.004 0.029 0.069 0.012 0.020 0.024 0.020 0.065 0.038 0.019 0.036 0.012 0.435 0.054 0.042 0.034 0.028 0.004 0.013

15 0.035 0.006 0.018 0.032 0.012 0.021 0.022 0.019 0.094 0.033 0.011 0.028 0.013 0.038 0.509 0.035 0.029 0.023 0.006 0.015

16 0.087 0.014 0.034 0.029 0.014 0.051 0.015 0.017 0.030 0.024 0.011 0.044 0.020 0.023 0.023 0.436 0.087 0.025 0.004 0.014

17 0.053 0.013 0.022 0.024 0.014 0.022 0.012 0.030 0.030 0.035 0.014 0.032 0.013 0.022 0.024 0.107 0.470 0.050 0.003 0.011

18 0.061 0.016 0.008 0.015 0.026 0.013 0.007 0.145 0.017 0.088 0.021 0.009 0.011 0.010 0.014 0.023 0.045 0.453 0.004 0.015

19 0.025 0.006 0.011 0.014 0.067 0.015 0.014 0.026 0.015 0.046 0.016 0.012 0.011 0.010 0.018 0.022 0.016 0.024 0.579 0.052

20 0.024 0.007 0.010 0.015 0.120 0.014 0.033 0.026 0.017 0.045 0.013 0.017 0.010 0.012 0.018 0.022 0.019 0.031 0.026 0.521
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To find the similarity score between frequency
profiles, we used the Pearson correlation coeffi-
cient r:
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We have chosen the Pearson correlation coeffi-
cient as the comparison measure between profiles
largely because of the results obtained by Pietro-
kovski [15], who studied how to find homologies be-
tween blocks in the BLOCKS database and found that
of four different similarity measures between profiles

the Pearson correlation coefficient gave the best re-
sults. For each frequency profile, similar profiles were
found that had therewith a Pearson correlation coeffi-
cient of at least 0.7. Profiles already included in pro-
file groups were not considered as seeds of new
groups. For each of these groups, an average profile
was calculated. Then an iterative procedure was
launched. At each step each profile was assigned to
the cluster with the nearest average. The averages
were recomputed and very similar clusters were
merged. The procedure came to termination when the
number of clusters became stable.

Table 1 shows 20 average profiles correspond-
ing to each frequency cluster. Each cluster is domi-
nated by a single amino acid.
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Table 2. Average profiles of frequency profile clusters obtained from randomly generated columns. Dominating amino acids
are in boldface

A C D E F G H I K L M N P Q R S T V W Y

1 0.480 0.000 0.027 0.027 0.013 0.055 0.014 0.027 0.028 0.028 0.014 0.027 0.014 0.027 0.014 0.082 0.042 0.067 0.000 0.014

2 0.046 0.663 0.000 0.015 0.015 0.015 0.015 0.015 0.015 0.046 0.000 0.016 0.015 0.000 0.015 0.031 0.031 0.031 0.000 0.016

3 0.043 0.000 0.560 0.084 0.000 0.043 0.000 0.013 0.027 0.028 0.000 0.059 0.015 0.015 0.013 0.042 0.027 0.015 0.000 0.014

4 0.042 0.014 0.068 0.502 0.000 0.014 0.028 0.000 0.069 0.029 0.013 0.028 0.014 0.055 0.027 0.040 0.015 0.027 0.000 0.015

5 0.029 0.015 0.000 0.015 0.543 0.014 0.000 0.042 0.015 0.100 0.015 0.015 0.015 0.000 0.014 0.015 0.027 0.028 0.014 0.085

6 0.060 0.014 0.015 0.016 0.015 0.653 0.000 0.015 0.031 0.016 0.000 0.029 0.015 0.015 0.015 0.045 0.015 0.015 0.000 0.016

7 0.028 0.014 0.015 0.043 0.014 0.028 0.546 0.000 0.029 0.028 0.014 0.042 0.013 0.044 0.029 0.029 0.014 0.014 0.000 0.056

8 0.026 0.013 0.013 0.000 0.026 0.013 0.014 0.434 0.013 0.129 0.027 0.013 0.013 0.012 0.000 0.026 0.014 0.186 0.000 0.027

9 0.039 0.014 0.027 0.067 0.014 0.027 0.000 0.027 0.455 0.014 0.026 0.027 0.026 0.039 0.092 0.039 0.026 0.013 0.014 0.014

10 0.028 0.013 0.013 0.014 0.056 0.013 0.000 0.097 0.014 0.512 0.057 0.000 0.014 0.014 0.014 0.014 0.028 0.069 0.000 0.028

11 0.050 0.013 0.013 0.012 0.024 0.013 0.025 0.063 0.050 0.172 0.364 0.013 0.013 0.024 0.013 0.025 0.024 0.062 0.000 0.025

12 0.042 0.000 0.069 0.027 0.013 0.055 0.013 0.027 0.042 0.014 0.013 0.493 0.014 0.028 0.028 0.054 0.041 0.013 0.000 0.013

13 0.046 0.015 0.016 0.029 0.000 0.030 0.015 0.016 0.031 0.030 0.000 0.016 0.635 0.015 0.015 0.031 0.029 0.016 0.000 0.016

14 0.054 0.013 0.014 0.092 0.013 0.014 0.027 0.013 0.065 0.040 0.013 0.027 0.013 0.433 0.053 0.053 0.026 0.013 0.000 0.025

15 0.028 0.014 0.014 0.030 0.014 0.014 0.027 0.000 0.115 0.027 0.014 0.015 0.014 0.043 0.530 0.028 0.014 0.029 0.000 0.028

16 0.105 0.014 0.027 0.039 0.013 0.051 0.014 0.012 0.040 0.026 0.000 0.040 0.026 0.027 0.013 0.427 0.089 0.012 0.014 0.013

17 0.066 0.000 0.027 0.026 0.012 0.027 0.000 0.039 0.027 0.040 0.013 0.041 0.027 0.013 0.013 0.106 0.445 0.053 0.013 0.013

18 0.065 0.014 0.013 0.014 0.026 0.013 0.000 0.155 0.014 0.095 0.026 0.000 0.013 0.013 0.013 0.013 0.052 0.434 0.000 0.026

19 0.030 0.000 0.016 0.015 0.031 0.031 0.016 0.015 0.015 0.015 0.016 0.014 0.000 0.016 0.015 0.014 0.014 0.015 0.652 0.060

20 0.028 0.000 0.014 0.014 0.112 0.013 0.029 0.027 0.028 0.057 0.013 0.014 0.014 0.014 0.014 0.027 0.013 0.041 0.013 0.515



Random Test
To understand the nature of profile clusters, a

random test was performed, generating profiles from
random protein sequences. Parameters of the genera-
tion process were chosen to closely mimic the param-
eters of the previous procedure. 400 random protein
sequences each having a length of 100 amino acids
were generated with standard background frequencies
of amino acids. This gave us 40 000 alignment col-
umns, which is close to the number of alignment col-
umns used in the previous procedure (39 253). Each
generated sequence was considered as an ancestral se-
quence, and the process of protein evolution in each
column of the generated sequence was modeled by
random generation of 32 amino acids with probabili-
ties determined by the amino acid substitution matrix
BLOSUM62. This number corresponds to the average
number of sequences in a multiple alignment obtained
in the previous procedure. The average protein iden-
tity in generated protein sequences was 28.7%, which
is close to the value obtained in the previous proce-
dure (27%).

The same clusterization procedure was applied
to randomly generated profiles, and similar 20 clus-
ters were obtained (Table 2). Table 3 shows Pearson
correlation coefficients between corresponding profile
averages from both groups of clusters.

Test whether an Alignment Column
Belongs to a Profile Cluster

In multiple alignments it is very important to
know whether a column belongs to the cluster or not.
If we know that a column belongs to a particular clus-
ter, it is possible to replace it with a single symbol
corresponding to the ancestral amino acid. If the col-
umn does not belong to any cluster, it is called a “gar-
bage” column. This means that there are no regulari-
ties in amino acid types and counts present in that col-
umn.

Intuitively, our decision to assign a particular
alignment column to the profile cluster will depend on
the number of sequences in the multiple alignment,
because the more there are sequences the more infor-
mation we have to make a decision. In the extreme
case, when we have only one sequence, it will auto-
matically belong to its cluster, since information is
too scarce to make a decision.

We used the ratio of the likelihoods of the most
probable ancestral amino acid to the likelihood of the

third most probable amino acid as our decision rule
(p1/p3). Likelihoods for pα were calculated using the
following formula:

where fα is the background frequency of amino acid
α, qαβ is the transition probability from amino acid β
to the amino acid β, nβ is the number of times amino
acid β occurs in the column, pα is the likelihood that
amino acid α was the ancestral amino acid. Likeli-
hoods for all 20 amino acids were then sorted in de-
creasing order: p1 ≥ p2 ≥ … ≥ p20.

If the ratio p1/p3 exceeds a critical value, then the
column will belong to the cluster, otherwise it will be
declared as a “garbage” symbol. To find out how this
critical value depends on N, the number of sequences
in the multiple alignment, we used the COG database
[16]. For different N we performed the following ex-
periments. N sequences were extracted randomly
from each COG, and then another N sequences were
extracted randomly from the sequences that were left
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Table 3. Pearson correlation coefficients between average
profiles obtained from BLOCKS and average profiles ob-
tained from random protein sequences

Cluster index Pearson correlation coefficient

1 0.997

2 0.998

3 0.997

4 0.994

5 0.998

6 0.999

7 0.997

8 0.996

9 0.990

10 0.998

11 0.982

12 0.997

13 0.998

14 0.994

15 0.996

16 0.996

17 0.996

18 0.997

19 0.995

20 0.998

∏⋅=
=

20

1β
αβαα

βn
qfp



in this COG after the first extraction. As a result of
this procedure, each COG gave us two multiple align-
ments each containing N sequences. Then different
critical values were tested. In each such test, multiple
alignments were converted to consensus sequences
following the decision rule p1/p3. Since each COG
gave two consensus sequences, all consensus se-
quences were partitioned into two groups, and then
TOG-BLAST [17] was launched to find bidirectional
best hits (BBHs) between these two groups. Then the
critical value was found corresponding to the maxi-
mum number of BBHs.

Basing on the results of such computational ex-
periments (data not shown), the following formula
was derived:

p

p

N1

3

2

0 8 20
10

> + 
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. .

RESULTS  AND  DISCUSSION

Profile clusters obtained from BLOCKS demon-
strate that, despite the seeming infiniteness of profile
space, it is possible to find condensation points for
functionally important columns and to indicate their
evolutionary origin. To the best of our knowledge,
this is the first attempt to clusterize BLOCKS, there-
fore much is remained to investigate. Many intriguing
questions arise. Are there any subtypes of the main
types that will give finer classification of condensa-
tion points? What is the probability distribution of
profiles around their average points? Do such clusters
exist in other alignments of protein families? If multi-
ple alignments naturally tend to form clusters in their
columns, the maximization of the sum of pairs as the
usual optimization goal for multiple alignments can
be substituted by the maximization of values p1/p3

summed over all alignments columns. This can poten-
tially result in developing new algorithms for multiple
alignment of sequences.

One very useful application of profile clusters,
which was immediately used after their discovery, is
building supergenomes from complete proteome com-
plements [17]. One of the tasks in this process is to
run a homology search program between multiple
alignments to find BBHs between them. Multiple
alignments are converted into consensus sequences
using the concept of profile clusters. Positive results
obtained in building supergenomes prove the useful-
ness of profile clusters.
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