
INTRODUCTION

Lower fungi are important for agriculture, med-
icine, food industry, and ecology in general. Re-
cently the genomes of several fungi, in particular,
Aspergillus nidulans, Neurospora crassa, Magna-
porte grizea have been sequenced [Fungal Genetics
Stock Center] and it is clear that the sequencing
would continue. Thus there arises a need in pro-
grams for identification of protein-coding genes in
these genomes. Gene recognition programs can be
divided into statistics-based ones and those based on
similarity to known sequences, namely, proteins,
mRNAs, and Expressed Sequence Tags. The latter
usually produce more reliable results, but they can-
not be applied to identification of new genes. As it is
unlikely that EST collections will be available for
many fungal species, and these organisms have a
considerable number of taxon-specific proteins, sta-
tistical programs for gene identification should be
developed. No such programs were available when
this project was initiated.

Such programs can be divided into universal
ones and programs requiring training on known
genes. The reliability of the former is insufficient [2].
On the other hand, genes with known homologs can
be used as a training set. Thus, our aim was to create a
gene identification problem that could be easily
trained for any given genome, but still would utilize
some specifics of fungal genes.

ALGORITHM

The program is based on the Hidden Markov
Chain with state durations, as in GenScan [1]. The
model includes the following coding and non-coding
states: single-exon gene; initial, middle, and terminal
exon (more exactly, coding part of an exon); intron;
intergenic region. The probability of a hidden state is
computed as the probability of coding or non-coding
state of the given sequence multiplied by the duration
probability of the corresponding state.

The probabilities of donor and acceptor splicing
sites are computed as in GenScan [1]. Depending on
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the existence of significant correlations between the
splicing signal positions, a statistical model is se-
lected. If the correlations are absent or non-significant
because of a small sample size, the probability of a
site is calculated using the positional nucleotide fre-
quency matrix. For acceptor sites, if most positions
show significant correlations, the WAM model is
used, in which the positional nucleotide probability
depends on the previous nucleotide. For donor sites, if
there are significant correlations between both adja-
cent and distanced positions, the probability is com-
puted using the MDD model.

As for many fungal genomes it is difficult to
compile a training set of sufficient size, we imple-
mented several models for calculating the probability
of coding and non-coding states. The program auto-
matically selects the strongest applicable model.
Coding DNA can be modeled using (1) codon statis-
tics; (2) Markov chain of the first order for amino ac-
ids combined with statistics of synonymous codons;
(3) three-periodical Markov chains of orders three
through five. The models of non-coding DNA were
the Markov chains of the first, third, and fifth order.

To improve recognition of intron–exon juctions
(5′-termini of exons), we developed a model of the
branch point. A candidate branch point is scored tak-
ing into account the profile model, distribution of the
distances to the acceptor site, the presence and the
number of AG dinucleotides between the branch point
and the acceptor site. The profile and the distributions
are computed basing on analysis of sites most similar
to those of Saccharomyces. This procedure for con-
structing the profile was suggested in [3]. We modi-
fied it by increasing the number of positions taken
into account (from 5 to 7) and adding pseudocounts.
The latter correct the profile under assumption that
some site variants are weakly represented in the train-
ing set because of the random sampling procedure.

In order to construct the branch point profile, the
window (–40) to (–2) upstream of the acceptor site was
scanned, and the site closest to the [CT]T[AG]a[CT]
consensus (ideally CTAaC) was selected. Deviations
in at most two out of three degenerate positions were
allowed. The set of candidates was used to determine
the distribution of branch point distances to the accep-
tor site. Application of the same procedure to random
sequences sets the noise level, that is, the average fre-
quency of the candidate sites in a random sequence.
Then the window position was re-set so that the

frequency of the candidate sites there exceeded the
noise level. The set of candidates in the final word
was used to construct the recognition profile of length
7 (two positions 5′ to the consensus were added), the
distribution of distances between branch points and
acceptor sites, and the number of AG dinucleotides in
this interval. Each element of the obtained frequency
matrix was augmented by the pseudocount equal to
the square root of the sample size.

PROCEDURES

Construction of the Training
and Testing Sets

The program was tested on single gene and
multigene fragments of Aspergillus spp. and Neuro-
spora crassa DNA. In a preliminary study, it was
shown that genomic sequences of the Aspergillus spe-
cies are statistically homogeneous. The training set
consisted of 193 genes of Emericella nidulans (Asper-
gillus nidulans), whereas the testing set was formed
by 252 single genes of various Aspergillus species.
For Neurospora crassa the training and testing set
consisted of 99 and 118 genes respectively. The test-
ing and training sets did not intersect.

The procedure of constructing these sets was as
follows. (1) All DNA sequences for the given organ-
ism were selected from GenBank. (2) Only sequence
fragments containing a coding sequence were selected;
sequences with in-frame stop codons or non-canonical
splicing sites were discarded. (3) Sequences containing
in the DEFINITION field keywords “contig,” “BAC,”
“clone” were discarded. (4) Sequences with coinciding
accession numbers in the “ACCESSION” field were
removed. (5) The remaining sequences were divided
into two sets of approximately equal size.

In order to test the program on multigene frag-
ments, we generated a set of genome-like sequence
fragments. They contained complete and partial genes
of the Aspergillus testing set on both strands with
probability 50%. Intergenic regions of average length
approximately 2000 bp were imitated by concatena-
tion of non-coding DNA segments. This procedure
was necessary, as the available data do not include a
sufficient number of well-annotated multigene frag-
ments. The generated set contained true genes from
GenBank and did not contain any missing genes, nor
genes predicted by other programs, whereas the statis-
tical properties of such fragments were the same as
those of the genome in general.
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To assess the sensitivity of GipsyGene to genes
in long DNA sequences, a different procedure was ap-
plied. Genes of the Neurospora testing set were iden-
tified in the complete genome [7] using the following
procedure. Protein sequences obtained by translation
of 118 coding regions were compared with the com-
plete genome using TBLASTN [4] at the significance
threshold EVAL < 10–30. Thus identified 115 genome
regions were aligned with the initial proteins using
Pro-Frame [5], and the exon–intron structure of the
genes was determined. The genome fragments ob-
tained were used to determine the drop in sensitivity
at long multigene fragments of Neurospora crassa as
compared with single-gene fragments.

Assessing the Results of Prediction on Genes of
Neurospora crassa Identified in the Genome

DNA Sequence
Since the genome sequence could contain se-

quencing errors or belong to a different strain,
Pro-Frame alignments could contain non-canonical
sites at exon–intron junctions and hanging (not align)
protein ends. Thus the sensitivity was computed only
for canonical sites satisfying the GT-AG rule. For
exons or introns with both canonical sites, the exon
(resp. intron) sensitivity was computed as the fraction
of complete segments of the given type with both
sites correctly predicted. The fraction of missed exons

(MissE) was computed relative to all exons identified
by Pro-Frame.

Assessing the Quality of Predictions
for Training, Testing, and Genome-like Sets

The quality of predictions at the nucleotide level
(sensitivity Sn, specificity Sp, correlation coefficient
CC, approximate correlation AC) and at the exon
level (Sp, Sn, missed exons MissE, false exons
WrongE) was calculated as in [1]. In addition, we
considered the overlap coefficient QQ, the ratio of the
overlap to the union of the true and predicted coding
regions. The use of this measure is preferable for the
analysis of single gene fragments, as it discounts the
number of non-coding nucleotides. An exon was con-
sidered correctly identified if both its splicing sites
were predicted correctly.

RESULTS

Prior to testing, optimal statistical models for the
coding and non-coding models for Aspergillus genes
were selected. Surprisingly, complicated models (up
to the third-order Markov chain) were only slightly
better than codon statistics (data not shown). The
fifth-order Markov model is cenventionally consid-
ered to be preferable for distinguishing between exon
and intron sequences. In our case, the training set is
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Table 1. Results of GipsyGene testing on genes of Aspergillus spp. and Neurospora crassa

Aspergillus spp.

Set
Nucleotide parameters Exon parameters

CC AC Sn Sp QQ Sn Sp MissE WrongE

training 0.87 0.88 0.96 0.92 0.89 0.69 0.61 0.06 0.16

with BPM 0.89 0.89 0.96 0.92 0.9 0.81 0.72 0.04 0.14

testing 0.86 0.87 0.95 0.95 0.9 0.75 0.64 0.05 0.16

with BPM 0.9 0.9 0.96 0.95 0.92 0.8 0.73 0.04 0.12

genome-like 0.89 0.89 0.96 0.9 0.86 0.76 0.63 0.06 0.2

with BPM 0.89 0.9 0.96 0.9 0.87 0.81 0.69 0.05 0.18

Neurospora crassa

Set
Nucleotide parameters Exon parameters

CC AC Sn Sp QQ Sn Sp MissE WrongE

training 0.87 0.87 0.93 0.92 0.87 0.69 0.64 0.10 0.13

with BPM 0.88 0.88 0.94 0.93 0.88 0.72 0.64 0.07 0.14

testing 0.86 0.86 0.91 0.93 0.87 0.66 0.61 0.11 0.12

with BPM 0.89 0.89 0.93 0.95 0.89 0.75 0.69 0.08 0.12

Notes: BPM: branch point model. CC: correlation coefficient. AC: approximate correlation. Sn: sensitivity. Sp: specificity. MissE: missed
exons. WrongE: false exons.



too small, and, although this model outperformed all
other models on the training set, its results on the test-
ing set were weak. Thus the program was tested in the
following configuration: three-periodical Markov mo-
del of the third order for coding regions, and homoge-
neous Markov model of the third order for non-
coding DNA.

The performance parameters on the training and
testing sets of Aspergillus and Neurospora are given
in Table 1. An addition, this table contains the results
of testing on the genome-like set of Aspergillus. In or-
der to estimate the influence of the branch point
model, the parameters both with and without this
model are given.

One can see that the contribution of the branch
point model is minor at the nucleotide level (about
1% QQ), but very considerable for exons: it increases
the exon sensitivity on the Aspergillus and Neuro-
spora testing sets of by 5% and 9% respectively, and
the exon specificity by 9% and 8% respectively. Fur-
ther we assume that the branch point model is in-
cluded into the base configuration of the program, and
all comparisons are done relative to the testing set in
he base configuration. Testing of GipsyGene on the
genome-like set of Aspergillus demonstrated a de-
crease of the nucleotide and exon specificity by 5%
and 4% respectively compared with the testing set,

and an increase of the false exon fraction by 6%. The
sensitivity of the program did not change.

Table 2 contains sensitivity measures for nu-
cleotides, exons, introns, donor and acceptor sites.
The program was tested on long fragments of the
Neurospora crassa genome containing genes from the
testing set. Table 2 shows that GipsyGene does not
lose the nucleotide and exon sensitivity on genomic
sequences. The site sensitivity was 88% for sites of
both types. The intron sensitivity (87%) is higher than
the exon sensitivity (74%), maybe because introns are
generally shorter than exons: the average lengths were
68 bp for introns and 187 bp for exons.

DISCUSSION

GipsyGene is a program for gene recognition in
DNA of lower fungi. The program does not rely on
data about homologs and thus can be used for recog-
nition of new taxon-specific genes. The program can
be trained on a relatively small sample of known
genes or genes identified by similarity. As most lower
fungi have a relatively well-defined branch point sig-
nal, the program incorporates a model of this signal,
considerably increasing exon sensitivity. The quality
of GipsyGene predictions of fungal genes is compara-
ble to that of GenScan [1] on human genes. The pro-
gram does not lose sensitivity on real genome

BIOPHYSICS     Vol. 48     Suppl. 1     2003

S74 NEVEROV et  al.

Table 2. Nucleotide, exon, intron, and site sensitivity of GipsyGene on genomic fragments of Neurospora crassa containing
genes from the testing set

Nucleotide sensitivity: SnN = 0.94

Exon sensitivity:

307 complete exons of 326 exons identified by Pro-Frame

Sensitivity SnE = 226/307 (0.74)

Missed MissE = 18/326 (0.06)

Intron sensitivity:

183 complete introns of 211 introns identified by Pro-Frame

Sensitivity SnI = 183/211 (0.87)

Site sensitivity:

Acceptor sites SnA = 187/213 (0.88)

Donor sites SnD = 187/212 (0.88)

Notes: Genes were identified by TBLASTN [4]; exons and introns, by Pro-Frame [5]. Exon and intron sensitivities were determined on com-
plete exons and introns bounded by canonical GT and AG dinucleotides. Site sensitivity was computed relative to canonical sites
identified by Pro-Frame.



fragments. Like all programs of this class [6], Gipsy-
Gene loses specificity on multigene fragments, as cur-
rently there are no models for gene boundaries.
Testing of the program on artificial multigene frag-
ments with an average intergenic distance of 2000 bp
(characteristic of Aspergillus) showed a decrease in
specificity by about 5%.
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