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Abstract

Transport proteins are difficult to study experimentally, and because of that their functional characterization trails that of en-
zymes. The comparative genomic analysis is a powerful approach to functional annotation of proteins, which makes it possible
to utilize the genomic sequence data from thousands of organisms. The use of computational techniques allows one to identify
candidate transporters, predict their structure and localization in the membrane, and perform detailed functional annotation, which
includes substrate specificity and cellular role.

We overview the main techniques of analysis of transporters’ structure and function. We consider the most popular algorithms
to identify transmembrane segments in protein sequences and to predict topology of multispanning proteins. We describe the main
approaches of the comparative genomics, and how they may be applied to the analysis of transporters, and provide examples
showing how combinations of these techniques is used for functional annotation of new transporter specificities in known families,
characterization of new families, and prediction of novel transport mechanisms.
© 2007 Elsevier B.V. All rights reserved.
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1. Introduction

Almost thirteen hundred bacterial genomes have been sequenced already, and hundreds more are in the pipeline
(according to the Genomes Online database, http://www.genomesonline.org/). Most of these genomes will never be
studied experimentally at any level of detail. On the other hand, the genome sequences, supplemented by other types
of high-throughput data, provide an unprecedented opportunity for applying comparative approaches for functional
annotation of genes, metabolic reconstruction, filling gaps in metabolic pathways, characterization of regulatory in-
teractions, and, eventually, reconstruction of phenotype given genome.

Traditionally, the main effort has been directed towards identification of new enzymes. Indeed, about 20–40% of
genes in a bacterial genome are so-called conserved hypothetical genes whose orthologs (see Table 1 for explanation
of these and other terms used in the field of comparative genomics) are present in a majority of genomes [56,148].
It is reasonable to assume that such genes encode proteins with some universal, essential functions. On the other
hand, about 10% of reactions of the central metabolism are not represented by any known gene [148]; among all
biochemical reactions catalyzed by proteins, this fraction reaches 40% [100,118]. Thus, the problem is to establish
the correspondence between these two sets [57,100,188].

The situation with transporters is even more difficult. These non-enzyme proteins constitute a large and extremely
important class of membrane proteins, which perform numerous transmembrane transport functions in the cell, such
as various ions transport, transport of vitamins, amino acids, drugs, etc. They form large families with numerous
duplications and horizontal transfer events (see Table 1), and transporter specificities towards their substrates are very
flexible. This makes it difficult and often impossible to infer transporter specificity from homology information alone,
and creates a need for application of advanced comparative genomics techniques. Indeed, in a recent survey of 87
prokaryotic genomes, three fourths of identified transmembrane proteins had functional annotation “unknown” [6].

There are many excellent reviews of genome functional annotation by comparative genomics, in particular [44,49,
55,127,148,149], and several books extensively covering this area [108,142]. There are also many surveys of trans-
porter families and repertoires in individual genomes (see below). However, neither study specially addresses the
specifics of comparative genomics of transporters. Here we will try to fill this gap.

The plan of the review is as follows. It starts with a brief description of methods used to identify transporters,
transporter classifications and databases. It is followed by a discussion of the basic comparative genomic approaches
to functional annotation of hypothetical genes, with a special emphasis on transporters. The last section presents recent
examples of such analyses.

2. Computational studies of transporters

Transporters are identified by similarity to known transporters, presence of family-specific sequence signatures
such as the pattern (Prosite PS00211, PFAM PF00005) that distinguishes ATPase components of ABC-transporters

http://www.genomesonline.org/


24 M.S. Gelfand, D.A. Rodionov / Physics of Life Reviews 5 (2008) 22–49
Table 1
Glossary

ATP-binding cassette (ABC) Transporters that use the energy of ATP hydrolysis.

Group translocators Transporters that combine transport with a chemical reaction.

Homologs Genes that share a common ancestor.

Horizontal (lateral) transfer Transfer of genes between two contemporary, maybe distant genomes, as opposed to vertical de-
scent from ancestors to descendants. This leads to incongruence of phylogenetic trees of genes and
species.

Non-orthologous gene displacement Substitution of a pre-existing gene by a horizontally transferred non-orthologous gene having the
same function. The new gene may be homologous to the initial one or unrelated to it.

Non-orthologous gene displacement in situ A specific case of non-orthologous gene displacement, when the displacing gene occupies exactly
the same position in an operon as the displaced gene.

Orthologs Homologs that diverged following a speciation event. Orthologs usually have the same cellular role.

Paralogs Homologs that diverged after a duplication within a genome. Note that genes in two different
genomes still can be paralogs (sometimes called out-paralogs), if their last common ancestor was
duplicated, and the genomes diverged after that duplication. Paralogs often have similar, but not
identical functions.

Phosphotransferase systems (PTS) Phosphotransfer-driven group translocators that import and phosphorylate sugars.

Phyletic (phylogenetic) profile (pattern) Separation of a group of genomes into those containing or not-containing representatives of a group
of orthologous genes.

Primary active transporters Transporters that use chemical, electrical, or solar energy to move compounds against a concentra-
tion gradient.

Regulon Set of co-regulated genes and operons.

Riboswitch Regulatory RNA structure that assumes alternative conformations in response to binding by small
molecules.

T-box Regulatory RNA structure that assumes alternative conformations in response to binding to un-
charged tRNA.

Secondary porters Transporters that use electrical potential, ion gradient, or, in case of coupled transport, concentra-
tion gradient of another substance.

from other ATPases [69], or by the analysis of structure. There are two major structural classes of transporter trans-
membrane domains: the main one, alpha-helical bundles, and much less prevalent beta-barrels that form pores in outer
membranes, mainly in Gram-negative bacteria and organelles.

2.1. Identification of transmembrane helices

The prediction of the structure of transmembrane proteins (not necessarily transporters) is a traditional area of
computational biology. The number of known distinct membrane protein structures is slightly more than one and a
half hundred, which, by different estimates, constitutes 0.5–2% of all structures [30,208]. This figure is not surprising,
given the fact that such proteins are difficult to overexpress [65] whereas their low concentrations in a cell make direct
purification impossible [228,234]. They also notoriously resist chrystallization, a necessary step for structure determi-
nation by X-ray chrystallography [222]. The relatively small number of known structures limits the possibilities for
extensive training or application of threading approaches to structure prediction, and also complicates independent
testing and benchmarking of different algorithms.

There are numerous programs for identification of membrane-spanning alpha-helices (transmembrane-, or TM-
segments), for recent reviews see, e.g., [25,30,81,117,150,177,208]. The prediction methods are based on several
properties of transmembrane proteins, mainly the prevalence of hydrophobic residues in the TM-segments, specific
amino acid patterns, so called caps, at the boundaries of TM-segments and loops [92,137], and differences in the
amino acid composition of external and internal (cytoplasmic) loops [18,144,249]. In particular, the caps are enriched
in aromatic amino acids tryptophan and tyrosine [239], whereas the preference for positively charged residues in the
cytoplasmic loops compared to external ones, the so-called “positive inside rule” [239,249], is used to predict the
transporter topology relative to the membrane.
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A convenient way to take into account these statistical features is to use the language of hidden Markov mod-
els (HMMs) [37]. The most popular programs, implemented as Web servers, seem to be HMM-based TMHMM
(http://www.cbs.dtu.dk/services/TMHMM-2.0/) [110,227] with its descendant Phobius (http://phobius.cgb.ki.se/)
[95,97] and HMMTOP (http://www.enzim.hu/hmmtop/index.html) [235,236], and a neural network PHDhtm
(http://npsa-pbil.ibcp.fr/cgi-bin/npsa_automat.pl?page=/NPSA/npsa_htm.html) [205,206].

While the highest accuracy obtained by cross-validation was reported to be as high as 95% [27,120,205], bench-
marking on proteins with available structural data demonstrated that even for the best methods, the prediction accuracy
is in the range of 60–80%, dependent on the accuracy measure, the parameter measured (e.g. the fraction of correctly
identified residues or segments), and exact definition of the “correct identification” [24,26,85,94,132,139]; the lat-
ter distinctions are important, since the average error in determining the TM-segment boundaries is about two turns
of the alpha-helix [30]. One of the problems with benchmarking the programs is a very limited amount of avail-
able data: for instance, the same dataset was used by different authors in [3,91,164,205]. A specialized Web server
(http://cubic.bioc.columbia.edu/services/tmh_benchmark/) for evaluation of new algorithms using a new benchmark
set was created to offset some of these problems [103].

The consistency of predictions between various programs is not very high, especially on whole-genome data com-
pared to structural benchmarks [94,208], and again this may serve as an indicator of overuse of the same training set of
available structures. One of the manifestations of this lack of consistency is the discrepancy in the estimated number of
transmembrane proteins encoded in complete bacterial genomes, e.g., Escherichia coli (21–40%), Mycoplasma pneu-
moniae (16–29%), Synechocystis sp. (24–41%), etc., listed in [208]. A good way to increase the quality of predictions
is to combine predictions by several different methods [5,85,163,176,230]. Similarly, prediction of TM-segments in
homologous proteins often produces different numbers of TM-segments, and their boundaries may not match [208].
Simultaneous prediction of TM-segments in aligned homologs leads to considerably better results [2,27,96,159,160,
169,205,206,244].

An important practical problem is to distinguish transmembrane helices from signal peptides of secreted proteins
[24,95,97,113,143,268]. Another problem, that has become apparent fairly recently, after several structures of mul-
tihelix transporters were solved, is that not all membrane helices are really transmembrane: some of them, so-called
re-entrant helices, return to the same side of the membrane, making a sharp turn within the latter [30,114]. Some
transmembrane helices were found to be very long, sometimes exceeding 40 amino acids [26].

2.2. Structure of transmembrane proteins

Although still relatively small, the number of solved membrane protein structures doubles every three years
[26,228], and it might be expected to increase even faster due to the activity of major international projects
(http://www.utoronto.ca/AlEdwardsLab/membrane_proteomics_index.html). Since the structural data are often dif-
ficult to assess directly, in particular, even the orientation of membrane protein structures from databases relative to
the membrane sometimes needs to be inferred computationally [124,237,238], several databases were created that
contain curated data about membrane protein structures (Table 2). This is accompanied by development of efficient
proteomic tools [228,234] and solving the structure of the translocon, the protein complex mediating helix insertion
into the membrane [16,20,138,242]. This yielded much better understanding of the translocation mechanism [257].

These developments pave way beyond simple prediction of transmembrane helices and their topology to more
detailed structural modeling [45,51,81]. Various specific problems addressed in computational structural studies are

Table 2
Transmembrane-protein structure databases

Database Content URL References

OPM Structures and orientation in the membrane http://opm.phar.umich.edu [124]
PDBTM Structures http://www.enzim.hu [238]
TMPDB Structures and topologies http://bioinfo.si.hirosaki-u.ac.jp/~TMPDB/ [86]
MPtopo Topologies http://blanco.biomol.uci.edu/mptopo/ [89]
TMPinGS TM proteins predicted in prokaryotic genomes http://bioinfo.si.hirosaki-u.ac.jp/~TMPinGS/ [4]
THGS TM helices predicted in genomes http://pranag.physics.iisc.ernet.in/thgs/ [48]
TMBETA-GENOME Beta-barrel proteins predicted in genomes http://tmbeta-genome.cbrc.jp/annotation/ [66]

http://www.cbs.dtu.dk/services/TMHMM-2.0/
http://phobius.cgb.ki.se/
http://www.enzim.hu/hmmtop/index.html
http://npsa-pbil.ibcp.fr/cgi-bin/npsa_automat.pl?page=/NPSA/npsa_htm.html
http://cubic.bioc.columbia.edu/services/tmh_benchmark/
http://www.utoronto.ca/AlEdwardsLab/membrane_proteomics_index.html
http://opm.phar.umich.edu
http://www.enzim.hu
http://bioinfo.si.hirosaki-u.ac.jp/~TMPDB/
http://blanco.biomol.uci.edu/mptopo/
http://bioinfo.si.hirosaki-u.ac.jp/~TMPinGS/
http://pranag.physics.iisc.ernet.in/thgs/
http://tmbeta-genome.cbrc.jp/annotation/
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determination of the rotational orientation of helices [2,170]; analysis and prediction of interhelical contacts [75,
122,133,217,224,254] and buried and lipid-exposed faces of transmembrane helices [13,161]; assembling helices
into a bundle [159]; identification of re-entrant helices [114,245], helices lying on the membrane surface [147],
and completely buried helices [2]; refinement of low resolution, in particular, cryoelectron microscopy structures
[41,50].

2.3. Beta-barrel transmembrane proteins

A similar, though separate, problem is identification of beta-barrel pore-forming transporters. It is a less popu-
lated area, although several programs exist for identification of such proteins, listed in [208]. In addition, several new
programs have appeared recently [240,253]. These newer algorithms not only predict transmembrane segments, but
attempt to model the geometry of the protein, e.g., the radius of the beta-barrel and the axis inclination. The com-
parison of algorithms based on machine learning techniques such as neural networks and support vector machines
with hidden Markov models demonstrated that the latter produce better results, and the consensus predictions are
better than each individual one [7], similar to the situation with alpha-structural proteins. A database of beta-barrel
transmembrane proteins, TMBETA-GENOME has been created to facilitate development and benchmarking of the
algorithms [66].

2.4. Classification and genomic distribution of transporters

We now turn from the discussion of generic transmembrane protein to transporters. An extensive research over the
last several years has led to the description of numerous families (Table 3) and eventually to a universal classification
of transporters based mainly on sequence similarity. The IUBMB-supported transport classification database TCDB
[22] contains five major functional categories based on the transport mechanism (channels and pores; primary ac-
tive transporters; secondary porters driven by electrochemical gradient; group translocators; transmembrane electron
flow carriers; two additional categories are auxiliary proteins and functionally uncharacterized ones; see Table 1 for
definitions) and more than four hundred families based on phylogenetic analysis [213,216].

The number of transporters depends on the genome size and ecological niche of an organism. Not only the number,
but also the fraction of transporters in a genome increases with the genome size [243], and it seems to be caused
by simultaneous increase of the number of transporter families represented in a genome and the average number
of paralogs per family [185]. However, earlier studies on more limited sets of genomes reported an approximately
linear trend for the number of membrane proteins and the logarithmic dependence of the number of families on the
genome size [122]. Also, for one of the largest classes containing multiple families, ATP-binding cassette (ABC)
transporters, the dependence of the number of candidate transporters on the genome size is approximately linear [69,
107]. One cause for this apparent discrepancy may be that the linear trend in the distribution of ABC-transporters is
observed only after discounting several outliers, specifically, rhizobial alpha-proteobacteria with large genomes [69,
107,185]. Two other groups of organisms that rely mainly on ABC transporters are photosynthesizing cyanobacteria
and organisms lacking the complete citrate cycle, mainly but not exclusively pathogens [185].

More generally, clustering of genomes by their transporter content produces groups that correlate with both phy-
logeny and lifestyle, e.g., groups of soil or plant-associated bacteria, or small obligate symbionts and pathogens. On
the other hand, even closely related organisms may have markedly different transporter content, e.g., the free-living
Corynebacterium species and pathogenic C. diphtheriae [185]. Similarly, families with related functions may have
different genomic distribution, e.g., the MET and ISVH families of ABC transporters that, in particular, are involved
in the iron uptake. The MET family transporters (TC 3.A.1.15) import a variety of divalent metal ions (Fe2+, Mn2+,
Zn2+) and are evenly distributed in bacteria of different lifestyles, whereas the ISVH transporters (TC 3.A.1.14) im-
port metal-containing compounds such as iron siderophores, haemin, vitamin B12 and are more numerous in bacteria
with relatively more diverse lifestyles [69].

Classification of enzymes and reconstruction of metabolic pathways from genomic data has led to the development
of metabolic databases such as MetaCyc [23] (http://metacyc.org), KEGG [98] (http://www.genome.jp/kegg/) and
BRENDA [221] (http://www.brenda-enzymes.info). In contrast to metabolic pathways, much less effort has been
expended on reconstructions of transport reactions from genomic studies (see Table 4 for a list of microbial transporter
databases). The TransportDB database collects known and predicted transport systems encoded in complete microbial

http://metacyc.org
http://www.genome.jp/kegg/
http://www.brenda-enzymes.info
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Table 3
Some large-scale studies and recent reviews of transporters families and their representation in genomes

Transporter family Genomes References

All families many genomes [165,166]
All families many genomes [211]
All families many genomes [185,187]
All families Spirochetes [214]
All families Mycobacterium spp. [232]
All families selected Gram-positive bacteria [125]
All families Bacillus subtilis [215]
Many families many genomes [210]
ABC many genomes [69]
ABC many genomes [84]
ABC many genomes [33]
ABC many genomes [220]
ABC many genomes [233]
ABC Mycobacterium tuberculosis [19]
ABC Escherichia coli [32]
ABC Escherichia coli [121]
ABC Burkholderia spp. [70]
ABC Bacillus subtilis [178]
ABC efflux many genomes [104]
Drug efflux systems many genomes [167]
ABC transporters of amino acids (2 subfamilies) many genomes [78]
Opp/Dpp family of ABC transporters involved in carbohydrate uptake Thermotoga maritima [29]
ABC and TRAP transporters involved in carbohydrate uptake Sinorhizobium meliloti [131]
ABC and other transporters involved in carbohydrate uptake Streptomyces coelicolor [12]
PTS many genomes [8]
PTS Escherichia coli [231]
PTS Bacillus subtilis [184]
PTS Mycoplasma genitalium [183]
TonB-dependent outer membrane receptors Xanthomonas spp. [14]
SbtA family of bicarbonate transporters cyanobacteria [251]
TTT (tripartite tricarboxylate transporter) family many genomes [259]
MOP (multidrug/oligosaccharydyl-lipid/polysaccharide) exporter superfamily (4 families) many genomes [83]
UT (urea transporter) family many genomes [135]
Ion transporter superfamily (12 families) many genomes [173]
TheR family of amino acid efflux transporters many genomes [266]
ENT (equilibrative nucleoside transporter) family many genomes [1]
DMT (drug/metabolite transporter) superfamily (14 families) many genomes [88]
TRAP (tripartite ATP-independent periplasmic) transporters many genomes [101]
PET (putative efflux transporter) family many genomes [71]
MFS (major facilitator superfamily) many genomes [209]
APC (amino acid/polyamine/organocation) superfamily (10 families) many genomes [87]
FATP (fatty acid transport protein) family many genomes [76]
LysE (L-lysine exporter) family many genomes [252]
MIP (major intrinsic protein) family many genomes [158]

genomes and annotated based on a series of experimental and bioinformatic evidences [186]. However, the larger
fraction of potential transport systems are still annotated as hypothetical and need to be characterized.

2.5. Origin of (new) transporter genes

Uneven distribution of transporter families in bacteria reflects their fast adaptation to new environments with di-
verse chemical composition, and its main source seems to be horizontal gene transfer. Indeed, although the exact rates
of horizontal transfer in different functional groups have not been compared (and it is not clear whether such compari-
son can be made in a meaningful manner), anecdotal evidence shows frequent lateral transfer of transporter genes and
frequent non-orthologous gene displacements. For example, the gene cluster yiaJKLMNOPQRS responsible for the
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Table 4
Transporter databases

Database Content URL References

TCDB All transporters http://www.tcdb.org [216]
TransportDB All transporters http://www.membranetransport.org [186]
ABCdb ABC transporters http://www-abcdb.biotoul.fr/ [179]
ABSCISSE ABC transporters http://www.pasteur.fr/recherche/unites/pmtg/abc/database.html [33]

L-xylulose catabolism in Escherichia coli contains genes yiaMNO encoding a binding protein-dependent secondary
transporter (TRAP, tripartite ATP-independent periplasmic transporter), whereas homologs of the enzyme-encoding
yiaQRS genes in other genomes are found in tentative operons with secondary transporters (Klebsiella oxytoca), ABC
transporters (Yersinia pestis), and PTS systems (Vibrio spp., Firmicutes) [171]. Similarly, numerous discrepancies in
the phylogenetic trees for the components of PTS systems and deviations of these trees from the species phylogeny
demonstrate that gene shuffling plays an important role in the evolution of these systems [212,272].

An even more frequent type of events in the history of transporters is duplications (again, a necessary caveat is that
it has not been measured accurately, so this statement is based mainly on our personal impressions from analysis of
dozens of diverse metabolic systems). In many cases the transporters are duplicated within larger loci containing trans-
porters, enzymes and regulators: such behavior is especially common among sugar catabolism systems (O.N. Laikova,
personal communication). A disproportionally large family of ABC transporters in Thermotoga maritima (TC 3.A.1.5)
was likely generated by lateral gene transfer from archaea and subsequent duplication and divergence events [29]. On
the other hand, duplications within operons are more common for ATPase and permease components of ABC systems,
yielding homologous subunits within the complex [105,233].

2.6. Evolution of the domain structure of transporters

Domain duplication, domain shuffling and gene fusions play a relatively smaller role in the evolution of trans-
porters [123]. There are, however, important exceptions. A relatively rare occasion is the domain exchange between
transporters and other types of proteins. Probably, the best known example is apparent co-optation of transporter
components as the sensor domains of regulatory proteins, e.g., the periplasmic ligand-binding component of ABC
transporters in transcription factors from the LacI family [145] or PTS-regulated domains IIA and IIB with intact
phosphorylation sites in transcription factors [64] or antiterminators from the BglG/SacY family [11,54,63].

Within-transporter events are more frequent. Some ABC-transporters contain fused ATPase and permease domains
in various combinations [105]. Of these, the permease fusion proteins are the most interesting. A relatively simple case
is the one when the fused domains contain an even number of transmembrane helices and are inserted in the membrane
in a conformation that is roughly symmetrical relative to an axis perpendicular to the membrane plane. However, there
is a more interesting situation when domains with an odd number of helices have an arrangement with approximate
two-fold symmetry relative to an axis lying in the membrane plane [158]. This means that in each pair of homologous
loops, one loop occurs on the cytoplasmic side, and the other one, on the external side of the membrane. The fact
that the topology of homologous domains may be completely different seems to show that it is impossible to predict
the topology from sequence. In particular, this may contradict the “positive inside” rule. However, in such cases the
bias for positive amino acids in cytoplasmic loops is rather weak [180,225]. Interestingly, when such homologous
domains are encoded by different genes and thus form separate proteins, the lysine+arginine bias is quite pronounced
and opposite in homologous loops, whereas when such permeases form homodymers, the bias is non-existent, as
expected [180].

Somewhat more generally, the duplication seems to be one of the major mechanisms of the permease evolution
[212,225]. At that, relatively short groups of transmembrane helices (three to six) not capable of forming a transporter
structure by themselves, duplicate or even triplicate, yielding fully formed permeases; in some cases partial duplication
[225] or emergence of a new transmembrane segment [212] may be observed. After formation of transmembrane
permeases, capable of secondary transport, they start to interact with other proteins, yielding transporters of the ABC,
TRAP and PTS types [36,212]; the latter, as mentioned above, may contain non-homologous components performing
the same function.

http://www.tcdb.org
http://www.membranetransport.org
http://www-abcdb.biotoul.fr/
http://www.pasteur.fr/recherche/unites/pmtg/abc/database.html
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3. Comparative genomics and gene annotation

3.1. Homology

All above analyses were based on homology, or, more exactly, sequence similarity. Indeed, the simplest way to
annotate a new gene is to compare it with a database of already annotated genes, and if a sufficiently similar relative
is found, to transfer its annotation to the gene in question. A problem with this simplistic description is in the words
“sufficiently similar”. There are no universal thresholds that would tell when the similarity is sufficient to infer the
functional equivalence. Another problem is that the functional equivalence itself also is a somewhat fuzzy notion.
Technically speaking, no two different proteins may be considered as absolutely equivalent, since their biochemical
parameters, such as binding constants towards various ligands, will be different. More relevant is the cellular role, but
it is harder to define formally.

A more robust way than simple use of the closest relatives is to construct phylogenetic trees. This allows one
to distinguish between orthologs and paralogs (Table 1): the former may be assumed to have a common role as
they basically are what is commonly called “the same gene in different genomes”, whereas the latter are likely to
assume different roles after the duplication event: otherwise they would be redundant. Moreover, genes with similar
roles will cluster and form branches, and it becomes possible to assign a common role to all genes in a branch
from the experimental data about some representatives. However, this also may be difficult: a branch may have no
experimentally studied representatives, and even if it does, it is not always clear at what depth the branch may be
considered as having a single common role. This is especially true for genes from large families with numerous
paralogs (transporters, transcription factors, some classes of enzymes). The roles of even closely related (that is,
sharing high sequence similarity) transporters may be different, as exemplified by a variety of metal transporters:
for instance, the nickel and cobalt transporters often belong to the same gene families and in many cases cannot be
differentiated on a phylogenetic tree [201]; this is not surprising, as many of those transporters are capable of both
nickel and cobalt import, albeit with different affinity [39], see a more detailed discussion in Section 4.

3.2. Co-localization

An indirect way to assign a cellular role to an uncharacterized gene is to take into account its chromosomal localiza-
tion [31,53,82,151,229,260]; reviewed in [142,148,153,203]. Indeed, the operon organization of prokaryote genomes
has a consequence that functionally related genes occur in close proximity in many bacterial genomes [269]. Exam-
ples of such genes are enzymes from one pathway or enzymes utilizing a compound with importers of this compound.
The suggested reasons for the existence of operons range from an obvious need to co-regulate genes in functional
subsystems [72,174] to a disputed theory of selfish operons propagating by horizontal gene transfer [77,115,116,154,
174]. Of course, the operon structure is rather dynamic, not all genes from functional subsystems form operons, and
sometimes operons contain functionally unrelated genes [175]. On the other hand, the eventual necessity of functional
coherence of operons is underscored by the phenomenon of non-orthologous gene displacement in situ (Table 1), when
a horizontally transferred gene occurs exactly in the same operon as the displaced one [146,262]; such displacements
are especially frequent in carbohydrate catabolic operons (O.N. Laikova, personal communication). Finally, it should
be noted that co-localization of functionally linked genes is not limited to operons. For example, co-regulation may
be also provided by sharing a regulatory region by divergently transcribed genes or operons [255].

Whatever the reason, the consistent chromosomal co-localization is a strong indication of functional linkage used
in the analysis of particular systems [148,260] (see also examples in the next section), large-scale analyses [19], and,
recently, in automated systems of gene annotation [40,204,241].

An important issue here is the resolution of orthology relationships, which may be not trivial; otherwise the evolu-
tionary signal may be overwhelmed by numerous positional linkages between members of large families of paralogs.
A recently appeared complication arises from multiple strains with nearly identical gene order: in naïve implemen-
tations this artificially enhances the scores of gene clusters derived from such strains. To avoid this problem, various
weighting procedures are employed, based on weighting the genomes according to the phylogenetic tree [271].

This approach was used for systematic analysis of ABC systems [105]. In many cases, genes encoding components
of these systems form operons; however, in some cases they are encoded in different chromosomal regions. This
leads to the appearance of “orphan” ATPase and permease genes that cannot be linked to each other by traditional
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techniques. However, if such orphans, or, more exactly, their orthologs, are observed in close proximity (preferably,
but not necessarily, in a candidate operon, that is, a string of genes transcribed in the same direction and separated by
very short intergenic spacers) in related species, this provides the necessary linkage.

An extreme case of co-localization is gene fusion. This is a relatively rare occurrence in prokaryotic genomes
(unlike eukaryotic ones), and also rare in transporters. The typical examples have been described in the previous
section.

3.3. Co-regulation and co-expression

However, operons may not cover entire functional subsystems, say, metabolic pathways, that are still co-regulated.
Thus, one more powerful method of linking together functionally related genes is the analysis of regulatory interac-
tions. Again, it is based on a simple premise that if several genes are co-regulated by the same transcription factor
or another regulatory mechanism (e.g., similar T-boxes or riboswitches, Table 1), they are likely to be functionally
linked. In other words, the conjecture says that regulons are functionally meaningful. Indeed, transporters of catab-
olized compounds are often co-regulated with genes encoding the respective catabolic pathways (co-induced by the
presence of the compound). In contrast, both transporter operons and operons encoding enzymes necessary for biosyn-
thesis of a compound are switched on when the compound concentration drops below an acceptable level. Since in
most cases the predictions of transcription factor binding sites are not very reliable, such analyses require careful
manual re-examination of the results using comparative genomics [202]; see also examples presented in the next
section.

An obvious consequence of co-regulation is co-expression that has became to be easily measurable in high-
throughput experiments. Convenient centralized depositories of expression array data are available, such as GEO
at NCBI [10] and ArrayExpress at EBI [162]. However, it should be noted that the expression data are rather noisy
due to limitations of experimental techniques and because they usually do not distinguish between consequences of
co-regulation and additional, distant correlations (modulation) such as major changes in the metabolic state of the
cell [267]. Compared to simple two-conditions experiments, clustering of gene expression profiles across the entire
spectrum of tested conditions using machine learning approaches offers a large potential to systematically predict
transcriptional regulatory networks [46,58] and operons in prokaryotes [15,35,112,207].

3.4. Co-occurrence

One more indication that genes belong to the same functional system may be the fact that they appear in genomes
together, that is, have the same phyletic (or phylogenetic) profiles (or patterns) (Table 1). This technique has been
validated and benchmarked in a number of studies [43,93,102,168,226,261]. Again, an important technical issue is
taking into account uneven density of sequenced genomes in different taxa [28]; in fact, selection of a correct set
of genomes is essential for this type of analysis [93]. One may also consider phyletic profiles based on phenotypic
properties [52,128] or regulatory motifs [198]. In the former case, a set of genes responsible for a given trait is selected,
whereas in the latter one, the relevant regulator has been found. Again, resolution of orthology, which is especially
difficult for large transporter families, is essential for this type of analysis.

It should be noted, however, that co-occurrence may be expected only if the genes are absolutely dependent upon
each other for forming an actively functioning subsystem. In the context of this review, such correlated genes are
substrate transporters and utilization pathways, e.g., sugar operons and sugar catabolism enzymes. However, the mo-
saic structure of such loci, the fact that the same transport role may be assumed by completely unrelated proteins,
and difficulties with establishment of orthology obscure phylogenetic patterns. The situation with enzymes in many
cases is less complicated, and several cases of missing enzymes or non-orthologous displacement were successfully
analyzed by a combination of position analysis and phyletic distribution (e.g., [34,62,119,140]; reviewed in [108,142,
148]). More exactly, for missing enzymes (that is, cases when a known biochemical activity is not represented by a
single known gene) the positional and phyletic analyses work in parallel, reinforcing each other. For non-orthologous
displacements the situation is more interesting [108,140,142]. The gene is assigned to a functional subsystem using
positional clustering or other available evidence, whereas the fact that its phyletic distribution is exactly complemen-
tary to the distribution of another gene yields hypothesis that these genes perform the same function and any of them
is sufficient (of course, the situation is rarely that equivocal).
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Table 5
Comparative genomics resources for prokaryotes

Database Content URL References

STRING co-localization, fusions, co-expression, co-
occurrence, text mining, high-throughput
experiments

http://string.embl.de [250]

IMG co-localization, co-occurrence http://img.jgi.doe.gov [130]
SEED co-localization, co-occurrence, annotation

and metabolic reconstruction
http://theseed.uchicago.edu [152]

Prolinks co-localization, fusions, co-occurrence http://dip.doe-mbi.ucla.edu/pronav [17]
Phydbac co-localization, fusions http://igs-server.cnrs-mrs.fr/phydbac/ [40]

For transporters, a variation of this idea proved to be fruitful. Again, a transporter is initially assigned to a path-
way using positional and regulatory analysis. Then its specificity is predicted based on the following reasoning: for a
catabolic pathway we expect co-occurrence of transporters and enzymes (with the above caveat for non-orthologous
displacement); for a biosynthetic pathway, a transporter of the end product or an intermediate compound may substi-
tute for the complete pathway (respectively, the upstream part of the pathway). Thus, if we observe a genome with the
transporter but no biosynthetic enzymes, we can more or less confidently predict that it is the transporter of the end
product of the pathway. Some examples of such predictions are listed in the next section.

3.5. Combined evidence

As usual in bioinformatics, the best results are obtained when diverse types of evidence are combined. In addition to
research projects where it was demonstrated that a combination of co-localization, co-expression, and co-occurrence
allows one to reproduce physical and/or functional interactions between proteins (e.g., [265]), there are several re-
sources that provide both pre-computed databases and tools for the analysis of new genomes (Table 5). The most
popular of these resources seems to be STRING [250]. The SEED genomic platform includes a number of tools for
comparative genomic analysis, including metabolic subsystem encoding and genome context analysis (chromosomal
clustering and phylogenetic profiling) [152].

4. Examples

4.1. Vitamin and carbohydrate transporters

Comparative genomics techniques provided for substantial progress in functional annotation of hypothetical trans-
porter genes. A collection of 36 solute uptake transporters, whose substrate specificities were tentatively predicted
by genomic analysis, is presented in Table 6. It should be noted that usually such predictions do not automatically
apply to an entire family, but only to certain groups of orthologous proteins whose specificity may be deduced by
various types of genomic evidence. However, in some cases the family seems to contain only transporters with one
assigned (and/or tested) specificity, for instance, the BioY family of biotin transporters [74], or the YpaA/RibU family
of riboflavin transporters [247].

Surprisingly, one of the major sources of specificity annotations is the relatively less popular analysis of regulatory
motifs (see the ‘R’ evidence in Table 6). It was used to assign specificity to candidate uptake transporters for amino
acids arginine ArgP, lysine LysW, methionine MetT, and glycine GlyP in S. oneidensis (and, of course, their orthologs
in other species), and for vitamins niacin YceI/NiaP, riboflavin YpaA/RibU, biotin BioY, and thiamin YuaJ in Bacillus
subtilis (again, with orthologs). All these predictions were based on co-regulation with the respective amino acid or
vitamin biosynthetic genes by a specific metabolite-responsive riboswitch or a transcription factor. A distinctive fea-
ture of these transporters is that they rarely co-localize with the biosynthetic genes and because of that their positional
analysis was not sufficient.

For instance, the functional role of the BioY family of hypothetical transmembrane proteins in biotin uptake was
tentatively suggested based on three combined types of evidence: transcriptional co-regulation, co-occurrence and
co-localization with the biotin biosynthesis genes [192]. The bioY genes in prokaryotes are co-regulated with bi-
otin biosynthesis genes by at least three different regulators, the widespread biotin repressor BirA [192], and two

http://string.embl.de
http://img.jgi.doe.gov
http://theseed.uchicago.edu
http://dip.doe-mbi.ucla.edu/pronav
http://igs-server.cnrs-mrs.fr/phydbac/
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Table 6
Specificities of solute uptake transporters predicted by the comparative genomic analysis

Name*# Substrates Family1 Example2 Phylogenetic distribution3 Evid

YicJ α-xylosides GPH YicJ_Ecoli Ent R (X
YagG β-xylosides GPH YagG_Ecoli Ent R (X
TogMNAB# oligogalacturonides ABC ECA2403 Ent R (K
NagP*# N-acetylglucosamine MFS SO3503 Alt, Xan R (N
RhiT*# rhamnogalacturonides MFS ECA3560 Ent R (R
RhiABC*# rhamnogalacturonides ABC STY3817 Ent, BCl R (R
GlyT* D-glycerate GntP SO1771 Alt, Vib, Pse, R (S
ScrT* sucrose FucP Sfri_3989 Alt R (S
NanP* sialic acid MFS VF0668 Ent, Vib R (N
LysW*# lysine NhaC SO1007 BCl, Alt, Vib, Pas R (L
TyrT*# tyrosine NhaC EF0402 BCl R (T
MetT*# methionine NhaC SO1087 BCl, Alt, Vib R (M
MetNIQ methionine ABC YusCBA_Bacsu BCl, Ent, Vib, Pas R (S
GlyP* glycine AgcS SO0858, Spy1270 Alt, Vib, Pas, BCl R (G
SteT threonine APC, LAT YkbA_Bacsu BCl R (T
TrpP tryptophan YhaG YhaG_Bacsu BCl, Arc R (T
TrpXYZ* tryptophan ABC Spy1016 BCl R (T
ArgP* arginine PF00860 SO1245 Alt, Vib R (A
YqiXYZ arginine ABC YqiX_Bacsu BCl R (A
YvsH lysine APC YvsH_Bacsu Bacillales R (L
LysXY* lysine ABC SPy0277 Lactobacillales R (L
BioY# biotin (vitamin H) BUT YuiG_Bacsu BCl, α, Arc, Act, Cya R (B
PanP* pantothenate (vitamin B5) COG4684 Spy1223 BCl C (d
NiaP* niacin (vitamin B3) MFS YceI_Bacsu BCl, Act, TM, α,β, γ R (N
NiaT* niacin (vitamin B3) – Spy1425 BCl R (N
YuaJ# thiamin (vitamin B1) COG3859 YuaJ_Bacsu BCl R (T
PnuT*# thiamin (vitamin B1) PnuC SO2713 α,β, γ, ε, CFB R (T
YpaA/RibU# riboflavin (vitamin B2) RFT YpaA_Bacsu BCl R (R
PnuX*/RibM# riboflavin (vitamin B2) PnuC SCO1442 Act R (R
PnuN*# deoxynucleotides PnuC EF0739 Lactobacillales R (N
ThiXYZ*# hydroxymethylpyrimidine ABC HI0354-357 BCl, α, Pas, Vib, TM R (T
CytX*# hydroxymethylpyrimidine NCS1 NMB2067 BCl, β, Pas, Pse, Arc R (T
YicE xanthine NCS2 YicE_Ecoli Ent, Pas, Vib R (P
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R (B12), C (cbi) [195]; [201]
R (NikR), C [201]
R (NikR, B12), C [195]; [73]

tein families, PFAM or COG identification numbers

ewanella oneidensis, Bacsu, Bacillus subtilis; SCO,
, Vibrio vischeri; HI, Haemophilus influenzae; BME,

bacteriales; Alt, Altermonadales; Xan, Xanthomon-
, Chlorobium/Bacteroides; Cya, Cyanobacteria; TM,

site or a metabolite-sensing RNA structural element
lic genes (gene abbreviation is given in parenthesis);
Table 6 (continued)

Name*# Substrates Family1 Example2 Phylogenetic distribution3

CbiMNQO# cobalt ABC SCO5961 α,γ , Act, BCl, Cya, Arc
NikMNQO# nickel ABC SCO3159 α,γ, δ, Act, BCl, Cya, Arc
HoxN# cobalt/nickel NiCoT SA2489 γ,β, Act, BCl, Arc

* Tentatively suggested transporter names are marked by asterisks.
# Transporters discussed in the text.
1 Transport protein families are given according to the transport classification system of the TransportDB database. For uncharacterized pro

are given.
2 Standard gene/protein identificators are either from Genbank or Swiss-Prot. Genome abbreviations are: Ecoli, Escherichia coli, SO, Sh

Streptomyces coelicolor; EF, Enterococcus faecalis; SA, Staphylococcus aureus; Spy, Streptococcus pyogenes; ECA, Erwinia carotovora; VF
Brucella melitensis; NMB, Neisseria meningitidis.

3 Abbreviations of taxonomic groups of microorganisms: α,β, γ, δ, and ε correspond to α-, β-, γ -, δ-, and ε-proteobacteria; Ent, Entero
adales; Vib, Vibrionales; Pse, Pseudomonadales; Pas, Pasteurellales; BCl, Bacillus/Clostridium group; Act, Actinobacteria; Arc, Archaea; CFB
Thermotogales.

4 Genome context evidences are: R, co-regulation by a conserved regulatory motif which is either a candidate transcription factor-binding
(the name of the transcription factor or the RNA element is given in parenthesis); C, conserved gene clustering with functionally related metabo
O, co-occurrence profile (see the text for explanation).

5 References for the papers describing predictions and validations are in italic and bold, respectively. “U” stands for unpublished results.
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specialized transcription factors from different families, BioR in α-proteobacteria [199] and BioQ in Actinobacteria
[202]. The predicted biotin specificity of BioY transporters was experimentally confirmed by gene complementation
in Rhizobium etli [68] and biotin uptake assays in Rhodobacter capsulatus [74].

The riboflavin (vitamin B2) transporter YpaA was first identified by comparative analysis of RFN regulatory el-
ements (FMN-specific riboswitches) that co-regulate ypaA with the riboflavin synthesis rib genes [60]. Analysis of
co-occurrence of the riboflavin genes in Gram-positive bacteria provided with an additional evidence: ypaA compen-
sates for the absence of rib genes in Streptococcus pyogenes [247]. The predicted function of YpaA in B. subtilis and
its ortholog RibU in Lactococcus lactis was confirmed by direct measurements of riboflavin uptake in the wild-type
and knock-out strains [21,109,248].

The gene neighborhood technique was extensively used to assign specificity to various carbohydrate uptake trans-
porters (see the ‘C’ evidence in Table 6) that are in most cases co-localized with sugar catabolism genes and form
extensive carbohydrate utilization gene clusters [9,29,59]. Combining co-localization and co-regulation evidence is an
even more powerful approach used to identify candidate transporters for oligogalacturonides TogMNAB and rhamno-
galacturonides RhiT [191,196], N-acetylglucosamine NagP [264], glycerate GlyT, sucrose ScrT, and sialic acids NanP
(Fig. 1(A)). The predicted oligogalacturonide uptake system TogMNAB from Erwinia chrysanthemi was later shown
to provide E. coli with the ability to transport pectic oligomers [79].

Similarly, analysis of regulation and positional clustering was used to predict specificity of various metal ion
transporters [155,156,200,201]. For example, genes encoding nickel transporters are regulated by the NikR repressor
and/or co-localized with genes encoding nickel-dependent enzymes, whereas homologous cobalt transporters are
regulated by the cobalamin riboswitch and co-localized with cobalamin biosynthesis genes (see below and Fig. 2(B)).

Though in most of these cases the evidence was sufficient to link a transporter to a metabolic pathway, the exact
specificity could not be established without further analysis. With sugar and oligosaccharide transporters, the speci-
ficity could be predicted based on the metabolic context: for instance, if the transporter gene cluster contains genes
for cytosolic sugar hydrolases, it is likely that the transporter imports oligosaccharides. For example, many members
of Opp/Dpp ABC transporter family of Thermotoga maritima presumably involved in oligosaccharide transport are
co-localized with intracellular oligosaccharide hydrolases [29]. The oligogalacturonate transporter TogMNAB and in-
tracellular oligogalacturonate lyase PelW are encoded by the same KdgR-regulated operon in enterobacteria (Fig. 1)
[196].

4.2. Thiamin-related transporters

For vitamin transporters (also for amino acid transporters), the specificity towards the end product or an inter-
mediate compound could be assigned by the analysis of phyletic patterns. For example, comparative analysis of the
thiamin regulatory THI elements (TPP riboswitches) resulted in identification of numerous candidate thiamin-related
transporters, including YuaJ, PnuT, ThiXYZ and CytX (see Fig. 1(B)) [193]. Before this analysis, the ABC cassette
ThiBPQ was the only thiamin transporter characterized in bacteria. Analysis of the distribution of genes involved
in the thiamin biosynthesis pathway in bacteria has revealed that yuaJ is the only thiamin-regulated gene in several
Streptococcus species that have no thiamin biosynthesis genes (e.g., S. pyogenes), suggesting that it is involved in
the thiamin uptake. Two other hypothetical thiamin-regulated transporters, thiXYZ and cytX, were never found in the
genomes without thiamin biosynthesis genes, but sometimes they occur in the genomes with an incomplete thiamin
biosynthesis pathway lacking the hydroxymethylpyrimidine (HMP) synthesis gene thiC. Other metabolic pathways
for the HMP synthesis are not known. In many genomes, the thiXYZ genes are clustered with the HMP kinase gene
thiD. Based on these observations it was proposed that ThiXYZ and CytX are involved in the uptake of HMP, a
metabolic precursor of thiamin [193]. Additional supporting evidence came from the analysis of distant protein sim-
ilarities. The ThiY proteins constitute putative substrate-binding components of ABC transporters and are predicted
to have an N-terminal transmembrane segment. The C-terminal soluble domain of ThiY appears to be weakly similar
to the HMP biosynthesis enzyme Thi5 from yeasts [258], suggesting that ThiY is able to bind HMP analogs. An-
other predicted HMP transporter, CytX, belongs to the NCS1 family of nucleobase transporters. Recently one of these
predictions was confirmed in an experimental study that demonstrated that ThiXYZ is involved in the HMP salvage
pathway and ThiY binds an analog of this thiamin precursor, formyl aminopyrimidine [90].
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Fig. 1. Genome context techniques for prediction of transporter specificities in prokaryotes. (A) Carbohydrate utilization subsystems. Left,
metabolic pathways for catabolism of pectin, chitin, and rhamnogalacturonides. Right, chromosomal co-localization and co-regulation of genes
involved in these three metabolic pathways. Genes are shown by arrows with colors according to the functional role on the metabolic map. (B) Thi-
amin synthesis subsystem. Left, metabolic pathway for thiamin biosynthesis and uptake. Right, table of gene co-occurrence with indication of gene
co-regulation by THI riboswitches (red font) and/or clustering on the chromosome (yellow background). (For interpretation of the references to
color in this figure legend, the reader is referred to the web version of this article.)

4.3. NhaC family

As mentioned above, the real power of the genomic techniques lies in the analysis of families containing members
of different, difficult to resolve specificities. One such example is the NhaC Na+:H+ antiporter superfamily (Fig. 3).
Two members of this superfamily have been experimentally characterized in B. subtilis: the Na+:H+ antiporter NhaC
[172] and the Na+-lactate/2H+-malate antiporter MleN [256]. Comparative analysis of regulation of lysine biosynthe-
sis and transport genes has identified a set of candidate lysine transporters from the NhaC superfamily that have been
named LysW [194]. The lysine-responsive LYS riboswitches are present upstream of the lysW genes in the Shewanella
and Vibrio species, the Pasteurellaceae and the Bacillus/Clostridium group. Another group of NhaC-like transporters
(named MetT) were found to be regulated by S-adenosylmethionine (SAM) via the MetJ repressor in γ -proteobacteria
and SAM riboswitch in the Bacillus/Clostridium group. The SAM regulons include genes for the methionine biosyn-
thesis and transport, and thus MetT was tentatively annotated as a methionine transporter [197]. Finally, the analysis
of amino acid T-box regulons identified a group of candidate tyrosine transporters in the NhaC superfamily (named
TyrT) that are controlled by the tyrosine-specific T-box antitermination system (A.G. Vitreschak et al., submitted).
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Fig. 2. Nickel and cobalt transport systems in prokaryotes. (A) properties, specificities and topology predictions. Components from different protein
families are shown by different colors. (B) genome context analysis. Genes are shown by arrows with colors corresponding to the protein families.
Regulatory elements, NikR-binding sites and B12 riboswitches, are shown by dark blue and yellow dots, respectively. Positional clustering with
Ni-dependent enzymes and B12 biosynthesis genes is shown by dark blue and yellow arrows. (For interpretation of the references to color in this
figure legend, the reader is referred to the web version of this article.)

4.4. PnuC family

The PnuC family is one more example of a transporter family with high variability of specificities predicted by the
comparative genomic analysis (Fig. 4). The only two experimentally characterized representatives of this family are
the nicotinamide riboside permeases PnuC that are involved in the utilization of this metabolic precursor of NAD in
Haemophilus influenzae [219] and Salmonella enterica [67]. In the enterobacteria, the pnuC gene forms an operon
with the NAD biosynthesis gene nadA, and this operon is regulated by the NAD repressor NadR [61]. Analysis of
other NAD-related regulons revealed several pnuC-like genes preceded by candidate binding sites of transcription
factors NiaR in the Streptococcus spp., NrtR in Hahella chejuensis, and PnuR in the Vibrio spp. [189,190]. In addi-
tion, positional clustering of various pnuC-like genes with genes involved in NAD salvage was observed, e.g., in the
Pseudomonas spp. This allows for projecting the nicotinamide riboside permease function to these genes (shown in
orange in Fig. 4).

Though it was assumed that homologs of PnuC in general represent nicotinamide riboside-specific transporters [67,
219], other studies suggest a different functional role for other members of the PnuC family. A large group of pnuC-
like transporters (called pnuT) was found in thiamin regulons under control of the THI riboswitch in the Proteobacteria
and the Bacteroidetes species (shown in blue in Fig. 4). These pnuT genes are located in conserved gene clusters also
encoding outer membrane TonB-dependent transporters (OMPs) and predicted kinases from various families (e.g.,
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Fig. 3. Functional annotation of transporters from the NhaC family based on identification of amino acid-specific regulatory elements. Maximum
likelihood phylogenetic tree of the NhaC family proteins was adopted from [197]. Background color blocks show amino acid-specific regulatory
elements identified for the candidate methionine (MetT), lysine (LysW) and tyrosine (TyrT) transporters. (For interpretation of the references to
color in this figure legend, the reader is referred to the web version of this article.)

a homolog of the thiamin pyrophosphokinase TNR3 from yeast). Based on these data, it was proposed that these
hypothetical THI-regulated operons could be involved in the thiamin uptake across the outer and inner membranes
(by OMP and PnuT, respectively) and its subsequent phosphorylation to form thiamin pyrophosphate coenzyme [193].
The predicted thiamin transporters PnuT are distributed among several different branches on the phylogenetic tree of
the PnuC family (Fig. 4). Interestingly, one branch contains both candidate transporters PnuT and PnuC suggesting
that specificity of transporters in this family is flexible in evolution.

One more branch on the PnuC family tree contains the predicted riboflavin transporters PnuX. This tentative anno-
tation was based on the observation of pnuX genes preceded by RFN regulatory elements in the Actinobacteria [247]
(shown in magenta in Fig. 4). In three Actinobacteria species, the pnuX genes are located in the riboflavin biosynthesis
rib operons (Fig. 5), providing additional evidence for the predicted functional role of PnuX. Recently, the function of
PnuX from Corynebacterium glutamicum was studied in experiment: as predicted, the transport by PnuX (re-named
RibM) was not energy-dependent and had high affinity for riboflavin [248].

Finally, a group of PnuC-like transporters in the Lactobacillus spp. (called PnuN) is co-regulated by the NrdR
repressor with ribonuclotide reductases (Nrd) and a deoxynucleoside kinase (Dgk) that are involved in the dNTP
synthesis [198] (shown in green in Fig. 4). The pnuN and dgk genes in Enterococcus faecalis form a candidate NrdR-
controlled operon. This yields tentative reconstruction of the deoxyribonucleoside salvage pathway, which involves
transport and subsequent phosphorylation of deoxyribonucleosides.

Overall the PnuC-like transporters are involved in the uptake of unphosphorylated metabolites (nicotinamide ribo-
side, thiamin, riboflavin, and deoxynucleosides) that are then phosphorylated in the cytoplasm by respective kinases,
thus allowing to direct the substrate flow inside and to prevent efflux (Fig. 6). Indeed, in H. influenzae, the PnuC-
mediated substrate flow across the membrane is coupled to the rate of nicotinamide riboside phosphorylation [134].
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Fig. 4. Functional annotation of transporters from the PnuC family based on genome context analysis. Maximum likelihood phylogenetic tree was
constructed by the Phylip package [47] and colored by predicted transporter specificity based on gene co-localization and co-regulation (see insets
for details). Experimentally verified transporters are boxed. Taxonomic groups are indicated in bold. Genomic identificators for representatives
from each group are given in parentheses. (For interpretation of the references to color in this figure legend, the reader is referred to the web version
of this article.)

Even with these examples, some might argue that the genomic analysis provides only a limited extension of existing
knowledge: characterization of new specificity in an existing family or, at best, description of a new family. Our last
example demonstrates that sometimes it is possible to predict new transport mechanisms using only genomic analysis.

4.5. Nickel and cobalt uptake transporters

Transition metals nickel (Ni) and cobalt (Co) are essential components of many metalloenzymes [106,141]. The
most common Ni-dependent enzymes are urease, [NiFe] hydrogenease, and CO dehydrogenase. In the form of coen-
zyme B12, cobalt plays a number of crucial roles in many biological functions (e.g., synthesis of methionine and
deoxyribonucleotides). Synthesis of [Ni] enzymes and coenzyme B12 requires high-affinity uptake of metal ions from
natural environments where they usually are available only in trace amounts [38]. The nickel and cobalt uptake in
bacteria is mediated by various secondary and primary ABC transporters (Fig. 2(A)) [39].

Search for B12-specific regulatory elements (B12 riboswitches) and candidate binding sites of the nickel repressor
NikR accompanied by the analysis of co-localization with Ni-dependent and B12 biosynthetic genes was used to as-
sign specificities to a large number of candidate nickel and cobalt transporters from previously characterized families
of metal transporters, namely NiCoT, UreH, HupE, NikABCDE (Fig. 2(B)) [201]. Secondary transporters from the
NiCoT family are capable of both nickel and cobalt uptake, or prefer only nickel ions. The NiCoT transporters are
widespread among bacteria and found in some archaea and fungi. The metal ion preferences of six NiCoT trans-
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Fig. 5. Identification of riboflavin transporter PnuX in Actinobacteria. Genes and RFN regulatory elements are shown by arrows of various colors
and by black hairpins, respectively. Functional roles of clustered genes: ribBA, ribD, ribE, ribH are involved in the riboflavin biosynthesis; hisI and
hisG are from the histidine biosynthesis, and rpe is involved in the pentose phosphate pathway. (For interpretation of the references to color in this
figure legend, the reader is referred to the web version of this article.)

porters studied in metal accumulation assays correlate with the genomic context of the respective genes [73]. The
Ni-preferring NiCoT transporters are either located adjacent to genes encoding Ni-dependent enzymes or regulated
by the NikR repressor. The Co-preferring NiCoT transporters are located within the B12 biosynthesis gene clusters
that are preceded by B12 riboswitch elements [195,201].

Secondary transporters from the UreH family are Ni-specific and are often clustered with either urease or [Ni]
supeoxide dismutase [201]. Secondary transporters from the HupE/UreJ family are widespread among bacteria and
encoded within [NiFe] hydrogenase and urease gene clusters. Most of them are Ni-specific transporters; however, in
cyanobacteria, the hupE genes are preceded by B12 riboswitches, and thus their predicted cellular role is the cobalt
transport [195,201].

High-affinity Ni-specific ABC transporter NikABCDE is present in many proteobacteria and is regulated by NikR.
NikA is a periplasmic substrate-binding component, NikB and NikC are permease components, and NikD and NikE
are ATPases. Since NikABCDE systems belong to the large and functionally diverse nickel/peptide/opine PepT family,
it is quite difficult to annotate their homologs in species distant from proteobacteria. Analysis of regulatory ele-
ments (NikR sites or B12 riboswitches) was used to predict nickel and cobalt specificities of these transporters [201].
Diverged branches of Ni-specific systems (Nik-2, Nik-3) were detected in methanogenic archaea and some proteobac-
teria.

The genome context analysis also resulted in identification of new types of Ni/Co transporters, including novel
cobalt transporters CbtA and CbtC [195], and Ni/Co transport systems from a novel family of ABC transporters,
CbiMNQO (Fig. 2) [201]. The latter transporters consist of three conserved components (integral membrane pro-
teins CbiM/NikM and CbiQ/NikQ; and ATPase CbiO/NikO). The predicted cobalt transport systems have a small
component (CbiN) with two transmembrane segments. The predicted nickel transport systems also have additional
components, either NikN or NikL, whose topology is similar to that of CbiN but the sequence does not show any de-
tectable similarity. The CbiN/NikN/NikL proteins could be involved in the metal binding. The presence of an ATPase
subunit (CbiO/NikO) suggests that these systems are energized by the ATP hydrolysis. However, an unusual feature
of all ABC transporters from the CbiMNQO family is that they lack a separate substrate-binding protein, an essential
component of all known ABC uptake transporters in bacteria.

Experimental characterization of the CbiMNQO and NikMNQO transporters from Salmonella typhimurium and
Rhodobacter capsulatus by metal accumulation assays confirmed the substrate preferences of these transporters, as
initially predicted by genomic analyses [201]. On the other hand, the metal uptake results for the S. typhimurium
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Fig. 6. Proposed salvage pathways including PnuC-like transporters. (A) Salvage of pyridine nucleosides in Enterobacteriales, Pseudomonadales,
and Pasteurellales; (B) salvage of deoxynuclesides in Lactobacillales; (C) salvage of riboflavin in Actinobacteria; (D) salvage of thiamin in Pro-
teobacteria and the Bacteroidetes. Inner membrane transporters from the PnuC familyu are shown by black boxes. Outer membrane transporter
for thiamin is shown by grey box. Cytoplasmic enzymes that phosphorylate the substrate in the cell are shown by white boxes and include ribo-
sylnicotinamide kinase (RNK), riboflavin kinase (RK), deoxynucleotide kinase (DGK); thiamin pyrophosphokinase (TNR3), and other predicted
thiamin kinases from the putative choline kinase family PF01633, and the putative homoserine kinase family COG2334.

CbiMNQO cassette suggest that the transmembrane protein CbiQ and the ABC protein CbiO are not essential for
function of CbiMN, which was shown to be the basic component of the cobalt transporter. Based on these data it was
suggested that the CbiMNQO-like transport systems represent a mechanistically novel type of membrane transporters
that are independent of solute-binding proteins and are energized by CbiQO-like ABC modules.

Similarity searches identified multiple cbiQO-like genes unevenly distributed in bacterial genomes. Most of these
genes are co-localized with genes encoding unrelated hypothetical transmembrane proteins. The bioM and bioN genes
that are clearly similar to cbiQ and cbiO, respectively, are located adjacent to the biotin transporter gene bioY in
Sinorhizobium meliloti and have been reported to be required for the biotin uptake [42]. This, together with the ob-
servation of frequent co-localization of orthologous bioMN and bioY genes in prokaryotic genomes [192], suggested
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that BioM, BioN and BioY may encode a tripartite, modular biotin-uptake system. Experimental characterization of
the bioYMN cassette from R. capsulatus confirmed that both BioY alone and BioMNY complex are able to medi-
ate biotin uptake albeit with different capacity and affinity [74]. In contrast to most other CbiQO-like systems that
involve adjacent gene(s) for a transporter module, approximately two thirds of the bioY genes are not positionally
linked to bioMN and, moreover, may occur in genomes lacking bioMN/cbiQO homologs. On the other hand, in many
Firmicutes, the cbiQOO operons are adjacent to highly expressed genes encoding essential cellular functions (e.g.,
ribosomal proteins, RNA polymerease subunits and pseudouridylate synthase). There is a possibility that they serve
as universal energizing components for diverse transporters found in these bacteria.

5. Conclusions

Examples presented in this review demonstrate that the bioinformatics and comparative genomic analysis of trans-
porters is a powerful approach, allowing one to address important biological questions. Both the structure and the
function may be predicted with reasonable reliability and at varying level of detail, dependent on the user’s needs. The
number and location of transmembrane segments and the protein topology (relative to the inner and outer side of the
membrane) may be predicted using statistical analysis of the protein sequence. The simultaneous analysis of several
related proteins increases the reliability of predictions.

An even more interesting area is the analysis of the transporter function. Unlike the structure prediction, the func-
tion prediction is still more art than technology, and no Internet tools are specifically devoted to this task. However,
even application of more or less standard comparative genomic techniques often produces non-trivial results. The
simplest situation arises when functional specificity is ascribed to a new, experimentally uncharacterized member of
a known family based on co-localization, co-expression, and co-occurrence. The role of co-occurrence is somewhat
more important in the transporter analysis compared to more common enzyme studies, since it allows one to determine
precisely the transported compound as the entry point of the transporter in the associated metabolic pathway.

An important point here is the somewhat philosophical difference between the biochemical function and the cellular
role. Many transporters are capable of importing several related compounds, albeit with different efficiency. Thus, the
biochemical role of a transporter is best represented as a vector of efficiencies towards different compounds. On the
other hand, the cellular role seems to be normally limited to one compound (or few related compounds) that is further
metabolized by an associated pathway or is used immediately. For example, many transporters are importing both
nickel and cobalt, but their role may be predicted by co-regulation and/or co-localization with nickel-dependent or
cobalamin-biosynthesis enzymes. In cases when the experimental data are available, the predicted role coincides with
the biochemical preference towards one of those ions, although the biochemical preference is not absolute. Notably,
in some families thus predicted nickel and cobalt transporters seem to be intermixed in the phylogenetic tree, which
indicates that their biochemical properties are evolving at a fast rate. The same seems to be the case with many sugar
transporters.

However, the possibilities are not limited to the specificity analysis in already established families. New families
of transporters may be characterized using the same comparative approaches, but in this case the analysis starts with
structural characterization of the seed members: they are recognized as transporters based on the presence of multiple
transmembrane segments. In this case, the comparative genomic analysis not only is necessary for the assignment of
specificity, but provides with additional support for the initial annotation.

Finally, in at least one case the comparative genomics created a starting base for experimental studies of a new
transport mechanism, where a permease capable of secondary transport may also use ATP hydrolysis to increase the
affinity towards the main transported compound. This unusual ATP-dependent transport mechanism, initially predicted
based on the analysis of phyletic patterns, is becoming an area of intense experimental studies.
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