
INTRODUCTION

Study of molecular biology of prokaryotic cells
is of considerable theoretical and practical value. In
particular, one important aspect is regulation of meta-
bolic and functional systems. Compared with an
eukaryotic cell, a bacterial cell is relatively simple,
and in most cases the regulation is performed on the
transcription level.

Experimental analysis of gene regulation is very
labor-intensive. Therefore, analysis of regulatory sig-
nals by comparative genomics techniques becomes in-
creasingly popular, especially as more and more
genomes are sequenced. Application of comparative
techniques is essential for annotation of new geno-
mes; besides, this helps development of the evolution
theory of regulatory and other systems.

Like genes, regulatory signals are subject to nat-
ural selection. Unlike noncoding regions in general,
they are conserved and thus can be identified by sig-
nal analysis techniques. There exist two strategies for
identifying regulatory signals. One is to compile a set
of experimentally determined sites and construct a
recognition rule using statistical techniques. There are
several problems with this approach. Firstly, in most
cases it is impossible to create a reliable rule. Sec-
ondly, it is not possible to find sites for new, unstud-
ied regulatory systems.

The second approach is based on comparative
genomics. It relies on the assumption that a set of
co-regulated genes (regulon) in one genome will con-
stitute a regulon in a related genome (more exactly,
the regulon will be constituted by orthologs of the
genes from the first genome). Thus the regions up-
stream of orthologous genes will contain a signal rec-
ognized by one regulator. This allows one to describe
regulatory signals without experimental data about
regulation or gene function, as it is sufficient to have
groups of orthologous genes from related genomes.
This strategy was implemented in [1–3].

Analysis of regulatory networks is one of the
main problems of contemporary molecular biology.
The first step of such analysis is identification of
regulons. Co-regulation of genes can be deduced from
similarity of regulatory sites in upstream regions.
Thus clustering of similar sites identified by compari-
son of upstream regions of orthologous genes leads to
identification of candidate regulons.

The existing approaches to clustering of biologi-
cal sequences can be divided into hierarchical ones [4,
5] and those based on statistical models [6, 7]. The
former arrange the data basing on pairwise compari-
son and linking similar sequences. The latter make
clusters using a priori probability distributions.

Here we present a clustering algorithm based on
construction of a binary tree. It is a hierarchical

S17

Biophysics, Vol. 48, Suppl. 1, 2003, pp. S17–S20.
Original Russian Text Copyright © 2003 by Stavrovskaya, Mironov.

Clustering Regulatory Signals by Binary Trees
E. D. Stavrovskaya and A. A. Mironov

State Scientific Center GosNIIGenetika, 1 1st Dorozhny proezd, Moscow, 117545 Russia
Department of Bioengineering and Bioinformatics, E-mail: esta191@fromru.com

Moscow State University, 1-73 Vorobievy Gory, Moscow, 119992 Russia

Received November 3, 2003; in final form, November 19, 2003

Abstract—Application of the phylogenetic footprinting techniques to bacterial genomes generates a large
number of potential regulatory sites identified upstream of orthologous genes. The next step of such analysis
should be clustering of sites corresponding to one signal, that is, binding sites of one regulator. We describe
an algorithm for clustering of regulatory sites and present the results of its testing on real data.

Key words: regulatory signal, regulon, cluster



algorithm similar to the one described in [5], but it
differs from the latter in the method for identification
of clusters in the constructed tree.

ALGORITHM

The algorithm has two main stages: construction
of a tree, and tree analysis. Each node of the tree cor-
responds to a set of sites, and each tree corresponds to
a site in the initial sample. Tree construction is done
by the Simple Joining Algorithm. It is an iterative

process, starting with a site set. For each pair of
subtrees a distance is computed, defined as the corre-
lation coefficient
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Fig. 1. Algorithm of tree construction. Fig. 2. Example of a tree.

Table 1. Clusters in IRSA data

Regulator Gene Position Site
Number

of known sites
in the sample

Number
of sites in the

cluster

Number
of known sites
in the cluster

lexA
Inf : 12.98

EC_umuD 161 ctactgtatataaaaacagtat

7 7 7

EC_recN 67 ttactgtatataaaaccagttt

EC_lexA 112 ttgctgtatatactcacagcat

EC_dinP 86 tcactgtatactttaccagtgt

EC_ruvA 131 tcgctggatatctatccagcat

EC_recA 50 atactgtatgagcatacagtat

EC_ding 135 atattggctgtttatacagtat

purR

Inf : 13.28

EC_purM 119 gtctcgcaaacgtttgctttcc

6 6 6

EC_purH 75 gttgcgcaaacgttttcgttac

EC_purE 78 gccacgcaaccgttttccttgc

EC_cvpA 126 cctacgcaaacgttttcttttt

EC_purR 138 taaaggcaaacgtttaccttgc

EC_purL 106 tccacgcaaacggtttcgtcag
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fj(i, k) is the nucleotide frequency of nucleotide i in
position k in the set of sites corresponding to subtree
j; and are pseudocounts, Nj is the number of sites in
sample j; α is a constant. Select a pair of closest
subtrees and merge them into one subtree. The new
subtree (parent) corresponds to the union of the site
sets corresponding to the merged subtrees (children).

Thus at each iteration the number of subtrees de-
creases by 1. The procedure terminates at one tree
corresponding to the total site set. The schematic rep-
resentation of the algorithm is given in Fig. 1, and a
simple example, in Fig. 2.

At the second step, all nodes are considered in
order to determine the clusters. For each node the in-
formation content of the corresponding site set is
computed [8]:

(4)

Clusters are defined as nodes corresponding to
local maxima of the information content. Thus the
cluster node should correspond to the condition

(I > Ip) and ((I > Il) or (I > Ir)), (5)

where I is the information content of the given node,
Ip is the information content of the parent node, Ir and
Il are the information contents of the children nodes.

Thus we compute the information content of the
signal corresponding to the node. If formula (4) is
used without pseudocounts, single-site samples would
have the maximal information content, that is, all con-
structed clusters would consist of only one site.

However, the use of pseudocounts (3) allows one to
construct non-trivial clusters.

Figure 3 shows the behavior of the information
content at a route from the root to a leaf. As one can
see, initially the information content is close to zero,
and then it increases sharply. This means that the
node corresponds to a group of similar sites that differ
from the remaining sites in the sample. This could be
one cluster or several clusters corresponding to simi-
lar signals. The maximum corresponds to the optimal
division of the tree into clusters.
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Fig. 3. Behavior of the information content.

Table 2. Clusters in DPInteract data

Regulator
Number of

known sites in
the sample

Number of
sites in the

cluster

Number of
known sites in

the cluster

cpxR 12 10 10

crp 49 78 49

lparfadR 7 6 6

flhCD 3 3 3

fur 9 6 6

gcvA 4 4 4

hipB 4 3 3

lacI 3 3 3

lexA 19 15 15

metJ 15 6 6

metR 8 8 8

modE 3 3 3

nagC 6 4 4

ntrC 5 5 5

phoB 15 12 12

purR 22 16 16

trpR 4 4 3

tyrR 17 9 9
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TESTING  AND  RESULTS

The algorithm was tested on regulatory signals
of E. coli.

Table 1 lists the results of testing on candidate
sites selected from regions upstream of orthologous
genes of enteric bacteria using the IRSA algorithm
[9]. Only E. coli sites were considered.

The program was also tested on sites from
DPInteract [10]. The results are given in Table 2.

DISCUSSION

As one can see in Tables 1 and 2, the results are
reasonable. However, Table 2 contains regulators
whose clusters were not recovered completely. For
regulators such as CRP and TyrR this could be ex-
pected, as the corresponding signals are rather weak.
However, incompleteness of the PurR cluster is sur-
prising. The cause of this is the fact that a higher-level
cluster contains a subcluster of PurR sites as well as
GalR sites that interferes with formation of a proper
PurR cluster. Closer analysis showed that the reason
for that is that PurR sites from DPInteract are longer
than the signal, and nonsignificant positions at signal
termini decrease the information content. We plan to
implement a procedure for calculation of the statisti-
cal significance of positional information content, and
to disregard nonsignificant columns.
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