Задание №1

Поиск регуляторных мотивов транскрипции в бактериальных последовательностях

В первом задании Вам необходимо найти регуляторный мотив (набор сайтов) в полученных последовательностях с помощью программы <u>MEME</u>.

В этом файле после задания №1 и инструкций к программаме <u>MEME</u> приведены последовательности перед генами, экспрессия которых регулируется пуриновым репрессором **PurR**. Экспериментально установленные сайты связывания белка **PurR** выделены в них синим цветом. Задача состоит в том, чтобы определить, при каких длинах последовательностей и каком числе лишних (*mo есть не содержащих сайта*) последовательностей каждая программа способна находить сайты, совпадающие с экспериментальными. Поэтому с помощью двух упомянутых выше программ Вам надо найти реуляторный мотив длиной 16 нуклеотидов.

Каждому будет выдан текстовый файл с последовательностями в FASTA-формате.

Что представляет собой FASTA-формат:

FASTA-формат – это определенная форма записи последовательностей, с которой работает большая часть программ для анализа геномных последовательностей.

В первой строке должно стоять название последовательности после знака ">". Начиная со следующей строки приводится сама последовательность. Следующие друг за другом разные последовательности должны быть разделены пустой строкой. Ниже приводится пример записи нескольких последовательностей в FASTA-формате:

```
>guaB
acctgtcccatctcatgctcaagcagcagacgaaccgtttgattcaggcgactaacggtaaaaattgcaggggattgagaa
ggtaacatgtgagcgagatcaaattctaaatcagcaggttattcagtcgatagtaacccgcctt
>glnB
gggtgaaaatacggcgctgccaacctttgttgaggcacgtaatcagtttgaactcaactatttgcgtaagctgctgcaaat
caccaaaggcaacgtcacccacgcggcgagaatggcggggcgcaaccggacagaa
>purL
attctctgtgtcgtgcgcgtcccagcttgaaaaacgtaataatagtgaaaggtttactcataaatgagcggcattttgcg
taaacctgcgccagatggcaacttattacagccattggcggcacgcgtgctaattcacga
```

Часть выданных Вам последовательностей не содержит сайтов. Поэтому не удивляйтесь, если сайты будут найдены не во всех последовательностях. Сайт считается совпадающим с экспериментальным, если он пересекается с ним <u>на 8 или более нуклеотидов</u>. Ответ на задание следует представить в виде файла в формате *.doc с размечеными последовательностями. Для этого

- скопируйте из текстового файла в Word только те последовательности, в которых были найдены сайты. Последовательности должны быть скопированы *полностью*.
- выделите синим экспериментально установленные сайты.
- сайты, найденные с помощью программы <u>MEME</u> с параметром «**One per sequence**» (см. в инструкции) должны быть выделены *курсивом*
- сайты, найденные с помощью программы <u>MEME</u> с параметром «Zero or one per sequence» (также см. в инструкции) должны быть выделены жирным шрифтом
- все сайты (и экспериментальные, и предсказанные) должны быть на сером фоне

То есть ответ должен выглядеть так:

>prsA

В данном случае:

aagaaaacgttttc gc aaacgttttc gcgagg	 экспериментально установленный сайт связывания PurR сайт, найденный с помощью программы <u>MEME</u> с параметром «One
gcaaga <i>aaacgttttc</i>	per sequence » сайт, найденный с помощью программы <u>MEME</u> с параметром «Zero
Все выше перечисленные	ог опе рег sequence» с предсказанные сайты считаются совпадающим с экспериментальным
поскольку пересекаются	с ним более чем наполовину.

Инструкция по использованию программой МЕМЕ

On-line версия программы <u>MEME</u> находится по адресу <u>http://meme.sdsc.edu/meme/meme.html</u>

Окно программы содержит следующие поля:

Your e-mail address: Адрес Вашей электронной почты, на который будут высланы результаты.

Re-enter e-mail address: То же самое, еще раз (это сделано для того, чтобы предотвратить введение адреса с ошибками)

Ввести последовательности, в которых будет производится поиск сайтов, возможно двумя способами:

• Enter the name of a file containing the sequences here: нужно сослаться на файл,

содержащий последовательности в FASTA-формате. Удобнее воспользоваться кнопкой "Обзор..." (в некоторых браузерах эта кнопка называется "Browse...")

• The actual sequences here (Sample Input Sequences): в окно вводятся непосредственно сами последовательности, тоже в FASTA-формате.

Description of your sequences: описание вводимых последовательностей, данное поле не обязательно для заполнения.

How do you think the occurrences of a single motif are distributed among the sequences? – необходимо пометить, сколько сайтов <u>одного типа</u> Вы рассчитываете найти <u>в каждой</u> <u>последовательности.</u>

- One per sequence по одному сайту в каждой последовательности;
- Zero or one per sequence найти в каждой последовательности по одному сайту или вообще не найти в ней сайтов;
- Any number of repetitions позволяет найти в каждой последовательности несколько сайтов одного типа.

При выполнении задания необходимо произвести поиск два раза: в первый раз установив **Опе** per sequence, *во второй* – **Zero or one** per sequence.

MEME will find the optimum width of each motif within the limits you specify here:

длина искомого сайта, необходимо задать минимальную и максимальную длину в располагающихся ниже окнах.

При выполнении задания надо установить и минимальную, и максимальную длину сайта <u>16</u> *нуклеотидов.*

Maximum number of motifs to find: количество различных типов мотив, которые предполагается найти.

При выполнении задания необходимо указать значение 1, то есть искать мотивы <u>только одного</u> типа.

МЕМЕ will find the optimum number of sites for each motif within the limits you specify here: - количество сайтов каждого типа, которое предполагается найти во всей обучающей выборке. Данная функция имеет смысл лишь в том случае, если предполагается найти <u>более 1</u> сайта в каждой последовательности. Поэтому, при выполнении задания поля **Minimum** sites (>= 2) и **Maximum** sites (<= 300) <u>следует оставить пустыми</u>.

Следующие четыре функции не потребуются для выполнения задания и поэтому возле них <u>не</u> должно стоять галочек:

•	Text output format	 – формат, в котором будут представлены результаты: по умолчанию результаты будут оформлены в виде гипертекста (HTML формат).
•	Shuffle sequence letters	 осуществляет перетасовку букв в последовательности.
•	Search given strand only	 поиск сайта осуществляется только в приведенной
		последовательности, по умолчанию программа ищет сайт
		как в приведенной последовательности, так и в
		комплементарной.
•	Look for palindromes only	 осуществляется поиск только палиндромных сайтов.

После того, как все необходимые поля заполнены, нажимайте "Start search" (в некоторых браузерах эта кнопка называется "Submit Query"

После этого результаты будут высланы Вам по почте на адрес, указанный в окне **Your e-mail address**. В обновленном окне браузера при этом появляется информация о входных данных:

- e-mail, на который высланы результаты
- имя файла, содержащего последовательности
- количество искомых сайтов (в каждой последовательности)
- количество искомых мотивов (разных типов сайтов)
- минимальное и максимальное число искомых сайтов в каждой последовательности (если предполагается найти более 1 сайта в каждой последовательности)
- минимальная и максимальная длина искомого сайта
- таблица, отражающая статистику ваших данных:

type of sequence	dna
number of sequences	10
shortest sequence (residues)	100
longest sequence (residues)	100
average sequence length (residues)	100.0
total dataset size (residues)	1000

- тип последовательностей

- количество последовательностей

- длина самой короткой последовательности

- длина самой длинной последовательности
- средняя длина последовательности
- суммарная длина всех последовательностей

Работа с результатами.

В ответ на запрос на почтовый ящик высылаются следующие письма:

- 1) Подтверждение о том, что запрос принят и обрабатывается
- 2) Результаты обработки последовательностей программой МЕМЕ

3) Результаты обработки последовательностей программой MAST

Программа MAST, используя полученный с помощью программы MEME профиль для распознавания сайта, картирует сайты в тех последовательностях, которые были использованы для поиска мотива.

Для выполнения задания Вам потребуются <u>только результаты программы MEME</u>.

Файл с результатами содержит несколько разделов.

<u>MEME - Motif discovery tool</u> – информация об используемой версии программы.

<u>REFERENCE</u> – ссылка на статью о программе.

TRAINING SET – сведения о введенных последовательностях. **COMMAND LINE SUMMARY** - информация обо всех параметрах, часть из которых программа сама и устанавливает.

Далее следует описание каждого найденного мотива. В первой строке сообщаются сведения о длине сайта (width), количестве найденных сайтов (sites) и приводятся различные критерии оценки статистической значимости сайта (llr и *E-value*).

simplified pos.-specific probability matrix – построенная на основании найденных сайтов матрица вероятности нуклеотидов. По вертикали указаны нуклеотиды, а по горизонтали – позиции в последовательности сайта. Вероятность данного нуклеотида в данной позиции указывается в десятых долях, то есть, если в матрице стоит число 7, то частота этого нуклеотида в данной позиции равна 0,7.

":" – данный нуклеотид не встречается в этой позиции

"а" – данный нуклеотид встречается в этой позиции со 100%-ной вероятностью

Information Content Diagram – диаграмма, показывающая информационное содержание каждой позиции.

<u>Multilevel consensus sequence</u> – консенсусная последовательность для найденного сайта.

Далее приводится таблица, включающая сведения о найденных сайтах:

NAME	STRAND	START	P-VALUE		SITES	
gapA	+	74	1.68e-08	GCTGCACCTA	AATCGTGATGAAAATCACATTT	TTATCGTAAT
mtlA	+	21	6.74e-08	ATCAAAACAA	AAATGTGACACTACTCACATTT	AAATGCCATT
tnaL	+	206	9.82e-08	CTCCCCGAAC	GATTGTGATTCGATTCACATTT	AAACAATTTC
caiT	-	143	9.82e-08	ATAAGCTGTA	TTCTGTGATTGGTATCACATTT	TTGTTTCGGG
exuT	-	148	1.40e-07	TACAACTTTA	AAAGGTGAGAGCCATCACAAAT	GTGGGAATAT

NAME – имя последовательности

STRAND – Цепь ДНК, в которой найден сайт: "+" - введенная последовательность, "–" - комплементарная ей

START – положение сайта (то есть положение <u>первой</u> позиции сайта относительно начала последовательности)

P-VALUE – критерий статистической значимости сайта, чем он ниже, тем сайт имеет большую значимость. Сайты в списке перечислены именно по возрастанию *p-value*.

<u>SITES</u> – выравненные последовательности найденных сайтов. Приводятся последовательности сайтов (раскрашены) плюс по 10 нуклеотидов с каждой стороны.

В случае, если сайт найден не во введенной цепи, а в комплементарной ей, необходимо искать обратно-комплементарный ему.

Например, в результатах приведен следующий сайт:

codb - 17 9.57e-09 TGAAGATAAA AAGCAATCGTTTTCGTG GGGAAATATA

Вам следует искать <u>обратно-комплементарный</u> ему, то есть CACGAAAACGATTGCTT В рассматриваемой последовательности такой сайт будет располагаться следующим образом:

ааааааtatatttcccccacgaaaacgattgctt 16 нуклеотидов сайт, обратно-комплементарный

тому, который выдала программа.

Будьте внимательны!

Указывается не количество нуклеотидов до начала сайта, но положение первой позиции сайта.

Block diagrams – графическое отображение расположения сайтов по последовательностям, "+" и "–" обозначают цепи ДНК, в которых найден сайт (так же, как и в предыдущем случае).

Экспериментально установленные сайты связывания PurR

codB

 $aaaaaatatatttccccc {\tt acgaaaacgattgctt} {\tt tttatcttcagatgaatagaatgcggcggattttttgggtttcaaacagcaaacgatgcaatgcggcggatttttttgggtttcaaacagcaaacgatgcaatgcaatgcggcggatttttttgggtttcaaacagcaaacgaatgcaatgcaatgcaatgcaatgcagcgggatttttttgggtttcaaacagcaaacgaatgcaatgcaatgcagcggatgcaatgcagcggatgcaatgcaatgcaatgcaatgcaatgcaatgcagcggatgcaatg$

purE

tgatttcacagcc**acgcaaccgttttcct**tgctctctttccgtgctattctctgtgccctctaaagccgagagttgtgcaccaca

pyrC

agggcgcattcgcgccctttatttttcgtgcaa**aggaaaacgtttccgc**ttatcctttgtgtccggcaaaaacatcccttcagcc

purR

gcgtaccgcaacacttttgttgtgcgtaaggtgtgtaa**aggcaaacgtttacct**tgcgattttgcaggagctgaagttagggtc

cvpA

tttattgatgcgcgggaaggaaatccct**acgcaaacgttttctt**tttctgttagaatgcgccccgaacaggatgacagggcgtaa

purM

guaB

glnB

ttcccgacacgagctgg**atgcaaacgatttcaa**ggaatgaattggcgttatgtgttacgtttagcagatcaaaagacaggcgacc

purL

ttatttcc**acgcaaacggtttcgt**cagcgcatcagattctttataatgacgcccgtttcccccccttgggtacaccgaaagctta

purA

Задание №2

Поиск сайтов в эукариотических последовательностях

Во втором задании Вам необходимо будет найти сайты для известных сигналов в полученных последовательностях с помощью программы <u>rVISTA</u>. Для выполнения этого задания необходимо будет сделать попарные выравнивания последовательности из генома человека с последовательностями из геномов других млекопитающих. Всего Вам будет выдано три последовательности: одна – для человека, две другие – для других млекопитающих (*например*, Human_Aldolase.txt, Mouse_Aldolase.txt *u* Dog_Aldolase.txt).

Все последовательности, с которыми Вы будете работать, представляют собой промоторные области генов, экспрессирующихся в мышечной ткани. Поэтому в них Вы будете пытаться найти сайты связывания мышечно-специфичных факторов транскрипции.

Вам потребуется найти сайты для восьми таких факторов:

AP2	GATA1	MEF2	MEF3
MYOD	SRF	TEF1	TEF

Список этих факторов приведен также в инструкции по использованию программы.

Ответ должен состоять из трех частей:

1. Выравнивание последовательностей, на котором размечены <u>все</u> найденные сайты (*должно быть представлено в формате* *.doc)

Программа выдает выравнивания, на которых отмеченен *сайт только для одного* транскрипционного фактора и *только по одной цепи*. Вам же следует на одно выравнивание нанести все найденные сайты, отметив их <u>по обеим цепям</u>.

Например, программа выдала:

Для фактора MEF2 :

60	70	80	90	100	110	
seq1	TTGCCC	CTCTAGCCCCI	GTCCGTACC	GAGAAGCCCC	AAGAGGAGCA	GGACCCCAAGCGGA
			1111 1111		1 111 1111	
seq2	TGGCTC	CCCTGACCCCI	GTCCCTACC	AAAGAGTGTC	AGGAGAAGCA	GGGCACCAAGCAGA
	50	60	70	80	90	100
	120	130	140	150	160	170
seq1	GCCCTT	GCCATCCTGCI	GCGTGGTTC	TCAG <mark>GGTTAT</mark>	TCTGAGCTCT	GGCAGGCTTGGAGG
			1 11111		11111111	
seq2	GCCCCT	GCCATCCTGAI	GTCTGGTTC	TCA-GGTTAT	TCTGAGCTTT	GACAAGCTT-GAGG
	110	120	130	140	150	160

Для фактора MYOD :

seq1	TTGCCCCT	CTAGCCCCTG	rcc _{gtaccga}	GAAGCCCCAA	GAGGAGCAGGA	ACCCCAAGCGGA
seq2	TGGCTCCC	CTGACCCCTG	FCCCTACCAA	AGAGTGTCAG	GAGAAGCAGG	GCACCAAGCAGA
	50	60	70	80	90	100
	120	130	140	150	160	170
seq1	GCCCTTGC	CATCCTGCTG	CGTGGTTCTC	AGGGTTATTC	IGAGCTCTGG	CAGGCTTGGAGG
seq2	GCCCCTGC	CATCCTGATG	ICTGGTTCTC2	A-GGTTATTC:	IGAGCTTTGA	CAAGCTT-GAGG
	110	120	130	140	150	160

Ваш ответ в данном случае должен выглядеть так:

	MYOD
seq1	TTGCCCCTC TAGCCCCTGTCC GTACCGAGAAGCCCCAAGAGGAGCAGGACCCCAAGCGGA
seq2	TGGCTCCCCTGACCCCTGTCCCTACCAAAGAGTGTCAGGAGAAGCAGGGCACCAAGCAGA
	MEF2
seq1	MEF2 GCCCTTGCCATCCTGCGTGCGTGGTTCTCAG <mark>GGTTATTCTGAG</mark> CTCTGGCAGGCTTGGAGG
seq1	MEF2 GCCCTTGCCATCCTGCGTGGTGGTTCTCAG <mark>GGTTATTCTGAG</mark> CTCTGGCAGGCTTGGAGG

Если сайты разных факторов будут перекрываться между собой, то их необходимо выделять так, чтобы было видно, какие именно нуклеотиды принадлежат к данному фактору, например

	MYOD SP1	
seql	TTGCCCCTC TAGCCCCTGTCC GTACCGAGAAGCCCCAAGAGGAGCAGGACCCCAAGCGGA	
seq2	TGGCTCCCCTGACCCCTGTCCCTACCAAAGAGTGTCAGGAGAAGCAGGGCACCAAGCAGA	

- 2. Результаты расчетов, на сколько нуклеотидов приходится один сайт (*для каждого выравнивания*).
 - Поделите среднюю длину одной пары последовательностей (то есть той пары, которую Вы выравнивали) на суммарное число всех найденных сайтов. Это и будет число нуклеотидов, на которое в среднем приходится один сайт.
 - 2) Вы искали сайты для 8 мышечно-специфичных факторов. А теперь представьте себе, что Вам необходимо найти сайты для всех 407 факторов, имеющихся в арсенале программы <u>rVISTA</u>. На какое число нуклеотидов в среднем тогда приходился бы один сайт? Чтобы узнать это, разделите полученное значение на 50.
- 3. Ваши выводы

Инструкция по использованию программы rVISTA.

On-line версия программы <u>rVISTA</u> находится по адресу <u>http://genome.lbl.gov/vista/rvista/submit.shtml</u>

Перейдя по данному адресу необходимо в окне Total number of sequences набрать цифру "**3**" (поскольку у Вас три последовательности) и нажать "Submit"

Таким образом Вы перейдете в окно программы.

Окно программы содержит следующие поля: Your email address: Ваш электронный адрес, на который будут высланы результаты.

<u>Sequence</u> #1: последовательность из генома человека; <u>Sequence</u> #2, <u>Sequence</u> #3 : последовательности из других геномов.

Обязательно проследите, чтобы первой была именно последовательность из генома человека, иначе можете запутаться в результатах.

Для заполнения этих полей требуется воспользоваться кнопкой "Обзор" (в некоторых браузерах эта кнопка называется "Browse...")

Также желательно, чтобы Вы написали названия организмов в разделе Additional options, в окнах "Name" – чтобы впоследствии не запутаться в результатах.

Проследите, чтобы стояли следующие пометки:

- в Alignment program должна стоять пометка возле AVID
- возле поля "Find potential transcription factor binding sites using rVISTA" должна стоять галочка,

Если все установлено правильно, нажмите "Submit"

В новом окне содержатся функции, требуемые для поиска сайтов связывания.

Пометки должны стоять возле надписей "Use TRANSFAC matrices и "vertebrates". Если все правильно, можно нажимать "Submit"

После этого загрузится окно со списком известных для позвоночных факторов транскрипции. Здесь Вам необходимо будет поставить галочки возле следующих названий:

AP2	GATA1	MEF2	MEF3
MYOD	SRF	TEF1	TEF

и нажать "Submit"

После этого в новом окне появится сообщение

Your sequences were successfully submitted. An email will be sent to you when your request is processed.

Это значит, что результаты уже высланы на адрес, указанный в поле Your email address

В полученном письме будет содержаться ссылка на страницу с результатами. По этой ссылке Вам и следует перейти.

В открывшемся окне будут приведены сведения о построенных выравниваниях. Всего должно получиться два выравнивания, и с каждым Вы сможете работать по-одтельности. Для того, чтобы приступить к работе с выравниванием, пройдите по соответствующей **rVISTA** (*внизу, в правой части экрана, например*, rVISTA: <u>Human-Cow</u>)

По этой ссылке Вы перейдете в окно **Choose matrices to visualize**, в котором будут перечисленны все факторы транскрипции, отмеченные вами ранее. Возле каждого из названий поставьте галочку и нажмите "**Submit**"

После этого Вы попадете на страницу **Visualization Options**, где в средней колонке увидите перечислены все факторы транскрипции, сайты для которых Вы пытаетесь найти. Возле каждого имени фактора находится надпись <u>view in alignment</u>, кликнув по которой Вы перейдете на страницу с выравниванием.

Найденные сайты связывания данного фактора будут показаны на розовом фоне.